119 lines
4.0 KiB
Python
119 lines
4.0 KiB
Python
from sympy.core.sorting import ordered, default_sort_key
|
|
from sympy.combinatorics.partitions import (Partition, IntegerPartition,
|
|
RGS_enum, RGS_unrank, RGS_rank,
|
|
random_integer_partition)
|
|
from sympy.testing.pytest import raises
|
|
from sympy.utilities.iterables import partitions
|
|
from sympy.sets.sets import Set, FiniteSet
|
|
|
|
|
|
def test_partition_constructor():
|
|
raises(ValueError, lambda: Partition([1, 1, 2]))
|
|
raises(ValueError, lambda: Partition([1, 2, 3], [2, 3, 4]))
|
|
raises(ValueError, lambda: Partition(1, 2, 3))
|
|
raises(ValueError, lambda: Partition(*list(range(3))))
|
|
|
|
assert Partition([1, 2, 3], [4, 5]) == Partition([4, 5], [1, 2, 3])
|
|
assert Partition({1, 2, 3}, {4, 5}) == Partition([1, 2, 3], [4, 5])
|
|
|
|
a = FiniteSet(1, 2, 3)
|
|
b = FiniteSet(4, 5)
|
|
assert Partition(a, b) == Partition([1, 2, 3], [4, 5])
|
|
assert Partition({a, b}) == Partition(FiniteSet(a, b))
|
|
assert Partition({a, b}) != Partition(a, b)
|
|
|
|
def test_partition():
|
|
from sympy.abc import x
|
|
|
|
a = Partition([1, 2, 3], [4])
|
|
b = Partition([1, 2], [3, 4])
|
|
c = Partition([x])
|
|
l = [a, b, c]
|
|
l.sort(key=default_sort_key)
|
|
assert l == [c, a, b]
|
|
l.sort(key=lambda w: default_sort_key(w, order='rev-lex'))
|
|
assert l == [c, a, b]
|
|
|
|
assert (a == b) is False
|
|
assert a <= b
|
|
assert (a > b) is False
|
|
assert a != b
|
|
assert a < b
|
|
|
|
assert (a + 2).partition == [[1, 2], [3, 4]]
|
|
assert (b - 1).partition == [[1, 2, 4], [3]]
|
|
|
|
assert (a - 1).partition == [[1, 2, 3, 4]]
|
|
assert (a + 1).partition == [[1, 2, 4], [3]]
|
|
assert (b + 1).partition == [[1, 2], [3], [4]]
|
|
|
|
assert a.rank == 1
|
|
assert b.rank == 3
|
|
|
|
assert a.RGS == (0, 0, 0, 1)
|
|
assert b.RGS == (0, 0, 1, 1)
|
|
|
|
|
|
def test_integer_partition():
|
|
# no zeros in partition
|
|
raises(ValueError, lambda: IntegerPartition(list(range(3))))
|
|
# check fails since 1 + 2 != 100
|
|
raises(ValueError, lambda: IntegerPartition(100, list(range(1, 3))))
|
|
a = IntegerPartition(8, [1, 3, 4])
|
|
b = a.next_lex()
|
|
c = IntegerPartition([1, 3, 4])
|
|
d = IntegerPartition(8, {1: 3, 3: 1, 2: 1})
|
|
assert a == c
|
|
assert a.integer == d.integer
|
|
assert a.conjugate == [3, 2, 2, 1]
|
|
assert (a == b) is False
|
|
assert a <= b
|
|
assert (a > b) is False
|
|
assert a != b
|
|
|
|
for i in range(1, 11):
|
|
next = set()
|
|
prev = set()
|
|
a = IntegerPartition([i])
|
|
ans = {IntegerPartition(p) for p in partitions(i)}
|
|
n = len(ans)
|
|
for j in range(n):
|
|
next.add(a)
|
|
a = a.next_lex()
|
|
IntegerPartition(i, a.partition) # check it by giving i
|
|
for j in range(n):
|
|
prev.add(a)
|
|
a = a.prev_lex()
|
|
IntegerPartition(i, a.partition) # check it by giving i
|
|
assert next == ans
|
|
assert prev == ans
|
|
|
|
assert IntegerPartition([1, 2, 3]).as_ferrers() == '###\n##\n#'
|
|
assert IntegerPartition([1, 1, 3]).as_ferrers('o') == 'ooo\no\no'
|
|
assert str(IntegerPartition([1, 1, 3])) == '[3, 1, 1]'
|
|
assert IntegerPartition([1, 1, 3]).partition == [3, 1, 1]
|
|
|
|
raises(ValueError, lambda: random_integer_partition(-1))
|
|
assert random_integer_partition(1) == [1]
|
|
assert random_integer_partition(10, seed=[1, 3, 2, 1, 5, 1]
|
|
) == [5, 2, 1, 1, 1]
|
|
|
|
|
|
def test_rgs():
|
|
raises(ValueError, lambda: RGS_unrank(-1, 3))
|
|
raises(ValueError, lambda: RGS_unrank(3, 0))
|
|
raises(ValueError, lambda: RGS_unrank(10, 1))
|
|
|
|
raises(ValueError, lambda: Partition.from_rgs(list(range(3)), list(range(2))))
|
|
raises(ValueError, lambda: Partition.from_rgs(list(range(1, 3)), list(range(2))))
|
|
assert RGS_enum(-1) == 0
|
|
assert RGS_enum(1) == 1
|
|
assert RGS_unrank(7, 5) == [0, 0, 1, 0, 2]
|
|
assert RGS_unrank(23, 14) == [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 2]
|
|
assert RGS_rank(RGS_unrank(40, 100)) == 40
|
|
|
|
def test_ordered_partition_9608():
|
|
a = Partition([1, 2, 3], [4])
|
|
b = Partition([1, 2], [3, 4])
|
|
assert list(ordered([a,b], Set._infimum_key))
|