ai-content-maker/.venv/Lib/site-packages/sympy/functions/special/tests/test_mathieu.py

30 lines
1.3 KiB
Python

from sympy.core.function import diff
from sympy.functions.elementary.complexes import conjugate
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (cos, sin)
from sympy.functions.special.mathieu_functions import (mathieuc, mathieucprime, mathieus, mathieusprime)
from sympy.abc import a, q, z
def test_mathieus():
assert isinstance(mathieus(a, q, z), mathieus)
assert mathieus(a, 0, z) == sin(sqrt(a)*z)
assert conjugate(mathieus(a, q, z)) == mathieus(conjugate(a), conjugate(q), conjugate(z))
assert diff(mathieus(a, q, z), z) == mathieusprime(a, q, z)
def test_mathieuc():
assert isinstance(mathieuc(a, q, z), mathieuc)
assert mathieuc(a, 0, z) == cos(sqrt(a)*z)
assert diff(mathieuc(a, q, z), z) == mathieucprime(a, q, z)
def test_mathieusprime():
assert isinstance(mathieusprime(a, q, z), mathieusprime)
assert mathieusprime(a, 0, z) == sqrt(a)*cos(sqrt(a)*z)
assert diff(mathieusprime(a, q, z), z) == (-a + 2*q*cos(2*z))*mathieus(a, q, z)
def test_mathieucprime():
assert isinstance(mathieucprime(a, q, z), mathieucprime)
assert mathieucprime(a, 0, z) == -sqrt(a)*sin(sqrt(a)*z)
assert diff(mathieucprime(a, q, z), z) == (-a + 2*q*cos(2*z))*mathieuc(a, q, z)