ai-content-maker/.venv/Lib/site-packages/sympy/geometry/plane.py

885 lines
26 KiB
Python

"""Geometrical Planes.
Contains
========
Plane
"""
from sympy.core import Dummy, Rational, S, Symbol
from sympy.core.symbol import _symbol
from sympy.functions.elementary.trigonometric import cos, sin, acos, asin, sqrt
from .entity import GeometryEntity
from .line import (Line, Ray, Segment, Line3D, LinearEntity, LinearEntity3D,
Ray3D, Segment3D)
from .point import Point, Point3D
from sympy.matrices import Matrix
from sympy.polys.polytools import cancel
from sympy.solvers import solve, linsolve
from sympy.utilities.iterables import uniq, is_sequence
from sympy.utilities.misc import filldedent, func_name, Undecidable
from mpmath.libmp.libmpf import prec_to_dps
import random
x, y, z, t = [Dummy('plane_dummy') for i in range(4)]
class Plane(GeometryEntity):
"""
A plane is a flat, two-dimensional surface. A plane is the two-dimensional
analogue of a point (zero-dimensions), a line (one-dimension) and a solid
(three-dimensions). A plane can generally be constructed by two types of
inputs. They are three non-collinear points and a point and the plane's
normal vector.
Attributes
==========
p1
normal_vector
Examples
========
>>> from sympy import Plane, Point3D
>>> Plane(Point3D(1, 1, 1), Point3D(2, 3, 4), Point3D(2, 2, 2))
Plane(Point3D(1, 1, 1), (-1, 2, -1))
>>> Plane((1, 1, 1), (2, 3, 4), (2, 2, 2))
Plane(Point3D(1, 1, 1), (-1, 2, -1))
>>> Plane(Point3D(1, 1, 1), normal_vector=(1,4,7))
Plane(Point3D(1, 1, 1), (1, 4, 7))
"""
def __new__(cls, p1, a=None, b=None, **kwargs):
p1 = Point3D(p1, dim=3)
if a and b:
p2 = Point(a, dim=3)
p3 = Point(b, dim=3)
if Point3D.are_collinear(p1, p2, p3):
raise ValueError('Enter three non-collinear points')
a = p1.direction_ratio(p2)
b = p1.direction_ratio(p3)
normal_vector = tuple(Matrix(a).cross(Matrix(b)))
else:
a = kwargs.pop('normal_vector', a)
evaluate = kwargs.get('evaluate', True)
if is_sequence(a) and len(a) == 3:
normal_vector = Point3D(a).args if evaluate else a
else:
raise ValueError(filldedent('''
Either provide 3 3D points or a point with a
normal vector expressed as a sequence of length 3'''))
if all(coord.is_zero for coord in normal_vector):
raise ValueError('Normal vector cannot be zero vector')
return GeometryEntity.__new__(cls, p1, normal_vector, **kwargs)
def __contains__(self, o):
k = self.equation(x, y, z)
if isinstance(o, (LinearEntity, LinearEntity3D)):
d = Point3D(o.arbitrary_point(t))
e = k.subs([(x, d.x), (y, d.y), (z, d.z)])
return e.equals(0)
try:
o = Point(o, dim=3, strict=True)
d = k.xreplace(dict(zip((x, y, z), o.args)))
return d.equals(0)
except TypeError:
return False
def _eval_evalf(self, prec=15, **options):
pt, tup = self.args
dps = prec_to_dps(prec)
pt = pt.evalf(n=dps, **options)
tup = tuple([i.evalf(n=dps, **options) for i in tup])
return self.func(pt, normal_vector=tup, evaluate=False)
def angle_between(self, o):
"""Angle between the plane and other geometric entity.
Parameters
==========
LinearEntity3D, Plane.
Returns
=======
angle : angle in radians
Notes
=====
This method accepts only 3D entities as it's parameter, but if you want
to calculate the angle between a 2D entity and a plane you should
first convert to a 3D entity by projecting onto a desired plane and
then proceed to calculate the angle.
Examples
========
>>> from sympy import Point3D, Line3D, Plane
>>> a = Plane(Point3D(1, 2, 2), normal_vector=(1, 2, 3))
>>> b = Line3D(Point3D(1, 3, 4), Point3D(2, 2, 2))
>>> a.angle_between(b)
-asin(sqrt(21)/6)
"""
if isinstance(o, LinearEntity3D):
a = Matrix(self.normal_vector)
b = Matrix(o.direction_ratio)
c = a.dot(b)
d = sqrt(sum([i**2 for i in self.normal_vector]))
e = sqrt(sum([i**2 for i in o.direction_ratio]))
return asin(c/(d*e))
if isinstance(o, Plane):
a = Matrix(self.normal_vector)
b = Matrix(o.normal_vector)
c = a.dot(b)
d = sqrt(sum([i**2 for i in self.normal_vector]))
e = sqrt(sum([i**2 for i in o.normal_vector]))
return acos(c/(d*e))
def arbitrary_point(self, u=None, v=None):
""" Returns an arbitrary point on the Plane. If given two
parameters, the point ranges over the entire plane. If given 1
or no parameters, returns a point with one parameter which,
when varying from 0 to 2*pi, moves the point in a circle of
radius 1 about p1 of the Plane.
Examples
========
>>> from sympy import Plane, Ray
>>> from sympy.abc import u, v, t, r
>>> p = Plane((1, 1, 1), normal_vector=(1, 0, 0))
>>> p.arbitrary_point(u, v)
Point3D(1, u + 1, v + 1)
>>> p.arbitrary_point(t)
Point3D(1, cos(t) + 1, sin(t) + 1)
While arbitrary values of u and v can move the point anywhere in
the plane, the single-parameter point can be used to construct a
ray whose arbitrary point can be located at angle t and radius
r from p.p1:
>>> Ray(p.p1, _).arbitrary_point(r)
Point3D(1, r*cos(t) + 1, r*sin(t) + 1)
Returns
=======
Point3D
"""
circle = v is None
if circle:
u = _symbol(u or 't', real=True)
else:
u = _symbol(u or 'u', real=True)
v = _symbol(v or 'v', real=True)
x, y, z = self.normal_vector
a, b, c = self.p1.args
# x1, y1, z1 is a nonzero vector parallel to the plane
if x.is_zero and y.is_zero:
x1, y1, z1 = S.One, S.Zero, S.Zero
else:
x1, y1, z1 = -y, x, S.Zero
# x2, y2, z2 is also parallel to the plane, and orthogonal to x1, y1, z1
x2, y2, z2 = tuple(Matrix((x, y, z)).cross(Matrix((x1, y1, z1))))
if circle:
x1, y1, z1 = (w/sqrt(x1**2 + y1**2 + z1**2) for w in (x1, y1, z1))
x2, y2, z2 = (w/sqrt(x2**2 + y2**2 + z2**2) for w in (x2, y2, z2))
p = Point3D(a + x1*cos(u) + x2*sin(u), \
b + y1*cos(u) + y2*sin(u), \
c + z1*cos(u) + z2*sin(u))
else:
p = Point3D(a + x1*u + x2*v, b + y1*u + y2*v, c + z1*u + z2*v)
return p
@staticmethod
def are_concurrent(*planes):
"""Is a sequence of Planes concurrent?
Two or more Planes are concurrent if their intersections
are a common line.
Parameters
==========
planes: list
Returns
=======
Boolean
Examples
========
>>> from sympy import Plane, Point3D
>>> a = Plane(Point3D(5, 0, 0), normal_vector=(1, -1, 1))
>>> b = Plane(Point3D(0, -2, 0), normal_vector=(3, 1, 1))
>>> c = Plane(Point3D(0, -1, 0), normal_vector=(5, -1, 9))
>>> Plane.are_concurrent(a, b)
True
>>> Plane.are_concurrent(a, b, c)
False
"""
planes = list(uniq(planes))
for i in planes:
if not isinstance(i, Plane):
raise ValueError('All objects should be Planes but got %s' % i.func)
if len(planes) < 2:
return False
planes = list(planes)
first = planes.pop(0)
sol = first.intersection(planes[0])
if sol == []:
return False
else:
line = sol[0]
for i in planes[1:]:
l = first.intersection(i)
if not l or l[0] not in line:
return False
return True
def distance(self, o):
"""Distance between the plane and another geometric entity.
Parameters
==========
Point3D, LinearEntity3D, Plane.
Returns
=======
distance
Notes
=====
This method accepts only 3D entities as it's parameter, but if you want
to calculate the distance between a 2D entity and a plane you should
first convert to a 3D entity by projecting onto a desired plane and
then proceed to calculate the distance.
Examples
========
>>> from sympy import Point3D, Line3D, Plane
>>> a = Plane(Point3D(1, 1, 1), normal_vector=(1, 1, 1))
>>> b = Point3D(1, 2, 3)
>>> a.distance(b)
sqrt(3)
>>> c = Line3D(Point3D(2, 3, 1), Point3D(1, 2, 2))
>>> a.distance(c)
0
"""
if self.intersection(o) != []:
return S.Zero
if isinstance(o, (Segment3D, Ray3D)):
a, b = o.p1, o.p2
pi, = self.intersection(Line3D(a, b))
if pi in o:
return self.distance(pi)
elif a in Segment3D(pi, b):
return self.distance(a)
else:
assert isinstance(o, Segment3D) is True
return self.distance(b)
# following code handles `Point3D`, `LinearEntity3D`, `Plane`
a = o if isinstance(o, Point3D) else o.p1
n = Point3D(self.normal_vector).unit
d = (a - self.p1).dot(n)
return abs(d)
def equals(self, o):
"""
Returns True if self and o are the same mathematical entities.
Examples
========
>>> from sympy import Plane, Point3D
>>> a = Plane(Point3D(1, 2, 3), normal_vector=(1, 1, 1))
>>> b = Plane(Point3D(1, 2, 3), normal_vector=(2, 2, 2))
>>> c = Plane(Point3D(1, 2, 3), normal_vector=(-1, 4, 6))
>>> a.equals(a)
True
>>> a.equals(b)
True
>>> a.equals(c)
False
"""
if isinstance(o, Plane):
a = self.equation()
b = o.equation()
return cancel(a/b).is_constant()
else:
return False
def equation(self, x=None, y=None, z=None):
"""The equation of the Plane.
Examples
========
>>> from sympy import Point3D, Plane
>>> a = Plane(Point3D(1, 1, 2), Point3D(2, 4, 7), Point3D(3, 5, 1))
>>> a.equation()
-23*x + 11*y - 2*z + 16
>>> a = Plane(Point3D(1, 4, 2), normal_vector=(6, 6, 6))
>>> a.equation()
6*x + 6*y + 6*z - 42
"""
x, y, z = [i if i else Symbol(j, real=True) for i, j in zip((x, y, z), 'xyz')]
a = Point3D(x, y, z)
b = self.p1.direction_ratio(a)
c = self.normal_vector
return (sum(i*j for i, j in zip(b, c)))
def intersection(self, o):
""" The intersection with other geometrical entity.
Parameters
==========
Point, Point3D, LinearEntity, LinearEntity3D, Plane
Returns
=======
List
Examples
========
>>> from sympy import Point3D, Line3D, Plane
>>> a = Plane(Point3D(1, 2, 3), normal_vector=(1, 1, 1))
>>> b = Point3D(1, 2, 3)
>>> a.intersection(b)
[Point3D(1, 2, 3)]
>>> c = Line3D(Point3D(1, 4, 7), Point3D(2, 2, 2))
>>> a.intersection(c)
[Point3D(2, 2, 2)]
>>> d = Plane(Point3D(6, 0, 0), normal_vector=(2, -5, 3))
>>> e = Plane(Point3D(2, 0, 0), normal_vector=(3, 4, -3))
>>> d.intersection(e)
[Line3D(Point3D(78/23, -24/23, 0), Point3D(147/23, 321/23, 23))]
"""
if not isinstance(o, GeometryEntity):
o = Point(o, dim=3)
if isinstance(o, Point):
if o in self:
return [o]
else:
return []
if isinstance(o, (LinearEntity, LinearEntity3D)):
# recast to 3D
p1, p2 = o.p1, o.p2
if isinstance(o, Segment):
o = Segment3D(p1, p2)
elif isinstance(o, Ray):
o = Ray3D(p1, p2)
elif isinstance(o, Line):
o = Line3D(p1, p2)
else:
raise ValueError('unhandled linear entity: %s' % o.func)
if o in self:
return [o]
else:
a = Point3D(o.arbitrary_point(t))
p1, n = self.p1, Point3D(self.normal_vector)
# TODO: Replace solve with solveset, when this line is tested
c = solve((a - p1).dot(n), t)
if not c:
return []
else:
c = [i for i in c if i.is_real is not False]
if len(c) > 1:
c = [i for i in c if i.is_real]
if len(c) != 1:
raise Undecidable("not sure which point is real")
p = a.subs(t, c[0])
if p not in o:
return [] # e.g. a segment might not intersect a plane
return [p]
if isinstance(o, Plane):
if self.equals(o):
return [self]
if self.is_parallel(o):
return []
else:
x, y, z = map(Dummy, 'xyz')
a, b = Matrix([self.normal_vector]), Matrix([o.normal_vector])
c = list(a.cross(b))
d = self.equation(x, y, z)
e = o.equation(x, y, z)
result = list(linsolve([d, e], x, y, z))[0]
for i in (x, y, z): result = result.subs(i, 0)
return [Line3D(Point3D(result), direction_ratio=c)]
def is_coplanar(self, o):
""" Returns True if `o` is coplanar with self, else False.
Examples
========
>>> from sympy import Plane
>>> o = (0, 0, 0)
>>> p = Plane(o, (1, 1, 1))
>>> p2 = Plane(o, (2, 2, 2))
>>> p == p2
False
>>> p.is_coplanar(p2)
True
"""
if isinstance(o, Plane):
return not cancel(self.equation(x, y, z)/o.equation(x, y, z)).has(x, y, z)
if isinstance(o, Point3D):
return o in self
elif isinstance(o, LinearEntity3D):
return all(i in self for i in self)
elif isinstance(o, GeometryEntity): # XXX should only be handling 2D objects now
return all(i == 0 for i in self.normal_vector[:2])
def is_parallel(self, l):
"""Is the given geometric entity parallel to the plane?
Parameters
==========
LinearEntity3D or Plane
Returns
=======
Boolean
Examples
========
>>> from sympy import Plane, Point3D
>>> a = Plane(Point3D(1,4,6), normal_vector=(2, 4, 6))
>>> b = Plane(Point3D(3,1,3), normal_vector=(4, 8, 12))
>>> a.is_parallel(b)
True
"""
if isinstance(l, LinearEntity3D):
a = l.direction_ratio
b = self.normal_vector
c = sum([i*j for i, j in zip(a, b)])
if c == 0:
return True
else:
return False
elif isinstance(l, Plane):
a = Matrix(l.normal_vector)
b = Matrix(self.normal_vector)
if a.cross(b).is_zero_matrix:
return True
else:
return False
def is_perpendicular(self, l):
"""Is the given geometric entity perpendicualar to the given plane?
Parameters
==========
LinearEntity3D or Plane
Returns
=======
Boolean
Examples
========
>>> from sympy import Plane, Point3D
>>> a = Plane(Point3D(1,4,6), normal_vector=(2, 4, 6))
>>> b = Plane(Point3D(2, 2, 2), normal_vector=(-1, 2, -1))
>>> a.is_perpendicular(b)
True
"""
if isinstance(l, LinearEntity3D):
a = Matrix(l.direction_ratio)
b = Matrix(self.normal_vector)
if a.cross(b).is_zero_matrix:
return True
else:
return False
elif isinstance(l, Plane):
a = Matrix(l.normal_vector)
b = Matrix(self.normal_vector)
if a.dot(b) == 0:
return True
else:
return False
else:
return False
@property
def normal_vector(self):
"""Normal vector of the given plane.
Examples
========
>>> from sympy import Point3D, Plane
>>> a = Plane(Point3D(1, 1, 1), Point3D(2, 3, 4), Point3D(2, 2, 2))
>>> a.normal_vector
(-1, 2, -1)
>>> a = Plane(Point3D(1, 1, 1), normal_vector=(1, 4, 7))
>>> a.normal_vector
(1, 4, 7)
"""
return self.args[1]
@property
def p1(self):
"""The only defining point of the plane. Others can be obtained from the
arbitrary_point method.
See Also
========
sympy.geometry.point.Point3D
Examples
========
>>> from sympy import Point3D, Plane
>>> a = Plane(Point3D(1, 1, 1), Point3D(2, 3, 4), Point3D(2, 2, 2))
>>> a.p1
Point3D(1, 1, 1)
"""
return self.args[0]
def parallel_plane(self, pt):
"""
Plane parallel to the given plane and passing through the point pt.
Parameters
==========
pt: Point3D
Returns
=======
Plane
Examples
========
>>> from sympy import Plane, Point3D
>>> a = Plane(Point3D(1, 4, 6), normal_vector=(2, 4, 6))
>>> a.parallel_plane(Point3D(2, 3, 5))
Plane(Point3D(2, 3, 5), (2, 4, 6))
"""
a = self.normal_vector
return Plane(pt, normal_vector=a)
def perpendicular_line(self, pt):
"""A line perpendicular to the given plane.
Parameters
==========
pt: Point3D
Returns
=======
Line3D
Examples
========
>>> from sympy import Plane, Point3D
>>> a = Plane(Point3D(1,4,6), normal_vector=(2, 4, 6))
>>> a.perpendicular_line(Point3D(9, 8, 7))
Line3D(Point3D(9, 8, 7), Point3D(11, 12, 13))
"""
a = self.normal_vector
return Line3D(pt, direction_ratio=a)
def perpendicular_plane(self, *pts):
"""
Return a perpendicular passing through the given points. If the
direction ratio between the points is the same as the Plane's normal
vector then, to select from the infinite number of possible planes,
a third point will be chosen on the z-axis (or the y-axis
if the normal vector is already parallel to the z-axis). If less than
two points are given they will be supplied as follows: if no point is
given then pt1 will be self.p1; if a second point is not given it will
be a point through pt1 on a line parallel to the z-axis (if the normal
is not already the z-axis, otherwise on the line parallel to the
y-axis).
Parameters
==========
pts: 0, 1 or 2 Point3D
Returns
=======
Plane
Examples
========
>>> from sympy import Plane, Point3D
>>> a, b = Point3D(0, 0, 0), Point3D(0, 1, 0)
>>> Z = (0, 0, 1)
>>> p = Plane(a, normal_vector=Z)
>>> p.perpendicular_plane(a, b)
Plane(Point3D(0, 0, 0), (1, 0, 0))
"""
if len(pts) > 2:
raise ValueError('No more than 2 pts should be provided.')
pts = list(pts)
if len(pts) == 0:
pts.append(self.p1)
if len(pts) == 1:
x, y, z = self.normal_vector
if x == y == 0:
dir = (0, 1, 0)
else:
dir = (0, 0, 1)
pts.append(pts[0] + Point3D(*dir))
p1, p2 = [Point(i, dim=3) for i in pts]
l = Line3D(p1, p2)
n = Line3D(p1, direction_ratio=self.normal_vector)
if l in n: # XXX should an error be raised instead?
# there are infinitely many perpendicular planes;
x, y, z = self.normal_vector
if x == y == 0:
# the z axis is the normal so pick a pt on the y-axis
p3 = Point3D(0, 1, 0) # case 1
else:
# else pick a pt on the z axis
p3 = Point3D(0, 0, 1) # case 2
# in case that point is already given, move it a bit
if p3 in l:
p3 *= 2 # case 3
else:
p3 = p1 + Point3D(*self.normal_vector) # case 4
return Plane(p1, p2, p3)
def projection_line(self, line):
"""Project the given line onto the plane through the normal plane
containing the line.
Parameters
==========
LinearEntity or LinearEntity3D
Returns
=======
Point3D, Line3D, Ray3D or Segment3D
Notes
=====
For the interaction between 2D and 3D lines(segments, rays), you should
convert the line to 3D by using this method. For example for finding the
intersection between a 2D and a 3D line, convert the 2D line to a 3D line
by projecting it on a required plane and then proceed to find the
intersection between those lines.
Examples
========
>>> from sympy import Plane, Line, Line3D, Point3D
>>> a = Plane(Point3D(1, 1, 1), normal_vector=(1, 1, 1))
>>> b = Line(Point3D(1, 1), Point3D(2, 2))
>>> a.projection_line(b)
Line3D(Point3D(4/3, 4/3, 1/3), Point3D(5/3, 5/3, -1/3))
>>> c = Line3D(Point3D(1, 1, 1), Point3D(2, 2, 2))
>>> a.projection_line(c)
Point3D(1, 1, 1)
"""
if not isinstance(line, (LinearEntity, LinearEntity3D)):
raise NotImplementedError('Enter a linear entity only')
a, b = self.projection(line.p1), self.projection(line.p2)
if a == b:
# projection does not imply intersection so for
# this case (line parallel to plane's normal) we
# return the projection point
return a
if isinstance(line, (Line, Line3D)):
return Line3D(a, b)
if isinstance(line, (Ray, Ray3D)):
return Ray3D(a, b)
if isinstance(line, (Segment, Segment3D)):
return Segment3D(a, b)
def projection(self, pt):
"""Project the given point onto the plane along the plane normal.
Parameters
==========
Point or Point3D
Returns
=======
Point3D
Examples
========
>>> from sympy import Plane, Point3D
>>> A = Plane(Point3D(1, 1, 2), normal_vector=(1, 1, 1))
The projection is along the normal vector direction, not the z
axis, so (1, 1) does not project to (1, 1, 2) on the plane A:
>>> b = Point3D(1, 1)
>>> A.projection(b)
Point3D(5/3, 5/3, 2/3)
>>> _ in A
True
But the point (1, 1, 2) projects to (1, 1) on the XY-plane:
>>> XY = Plane((0, 0, 0), (0, 0, 1))
>>> XY.projection((1, 1, 2))
Point3D(1, 1, 0)
"""
rv = Point(pt, dim=3)
if rv in self:
return rv
return self.intersection(Line3D(rv, rv + Point3D(self.normal_vector)))[0]
def random_point(self, seed=None):
""" Returns a random point on the Plane.
Returns
=======
Point3D
Examples
========
>>> from sympy import Plane
>>> p = Plane((1, 0, 0), normal_vector=(0, 1, 0))
>>> r = p.random_point(seed=42) # seed value is optional
>>> r.n(3)
Point3D(2.29, 0, -1.35)
The random point can be moved to lie on the circle of radius
1 centered on p1:
>>> c = p.p1 + (r - p.p1).unit
>>> c.distance(p.p1).equals(1)
True
"""
if seed is not None:
rng = random.Random(seed)
else:
rng = random
params = {
x: 2*Rational(rng.gauss(0, 1)) - 1,
y: 2*Rational(rng.gauss(0, 1)) - 1}
return self.arbitrary_point(x, y).subs(params)
def parameter_value(self, other, u, v=None):
"""Return the parameter(s) corresponding to the given point.
Examples
========
>>> from sympy import pi, Plane
>>> from sympy.abc import t, u, v
>>> p = Plane((2, 0, 0), (0, 0, 1), (0, 1, 0))
By default, the parameter value returned defines a point
that is a distance of 1 from the Plane's p1 value and
in line with the given point:
>>> on_circle = p.arbitrary_point(t).subs(t, pi/4)
>>> on_circle.distance(p.p1)
1
>>> p.parameter_value(on_circle, t)
{t: pi/4}
Moving the point twice as far from p1 does not change
the parameter value:
>>> off_circle = p.p1 + (on_circle - p.p1)*2
>>> off_circle.distance(p.p1)
2
>>> p.parameter_value(off_circle, t)
{t: pi/4}
If the 2-value parameter is desired, supply the two
parameter symbols and a replacement dictionary will
be returned:
>>> p.parameter_value(on_circle, u, v)
{u: sqrt(10)/10, v: sqrt(10)/30}
>>> p.parameter_value(off_circle, u, v)
{u: sqrt(10)/5, v: sqrt(10)/15}
"""
if not isinstance(other, GeometryEntity):
other = Point(other, dim=self.ambient_dimension)
if not isinstance(other, Point):
raise ValueError("other must be a point")
if other == self.p1:
return other
if isinstance(u, Symbol) and v is None:
delta = self.arbitrary_point(u) - self.p1
eq = delta - (other - self.p1).unit
sol = solve(eq, u, dict=True)
elif isinstance(u, Symbol) and isinstance(v, Symbol):
pt = self.arbitrary_point(u, v)
sol = solve(pt - other, (u, v), dict=True)
else:
raise ValueError('expecting 1 or 2 symbols')
if not sol:
raise ValueError("Given point is not on %s" % func_name(self))
return sol[0] # {t: tval} or {u: uval, v: vval}
@property
def ambient_dimension(self):
return self.p1.ambient_dimension