ai-content-maker/.venv/Lib/site-packages/sympy/sets/powerset.py

120 lines
2.8 KiB
Python

from sympy.core.decorators import _sympifyit
from sympy.core.parameters import global_parameters
from sympy.core.logic import fuzzy_bool
from sympy.core.singleton import S
from sympy.core.sympify import _sympify
from .sets import Set, FiniteSet, SetKind
class PowerSet(Set):
r"""A symbolic object representing a power set.
Parameters
==========
arg : Set
The set to take power of.
evaluate : bool
The flag to control evaluation.
If the evaluation is disabled for finite sets, it can take
advantage of using subset test as a membership test.
Notes
=====
Power set `\mathcal{P}(S)` is defined as a set containing all the
subsets of `S`.
If the set `S` is a finite set, its power set would have
`2^{\left| S \right|}` elements, where `\left| S \right|` denotes
the cardinality of `S`.
Examples
========
>>> from sympy import PowerSet, S, FiniteSet
A power set of a finite set:
>>> PowerSet(FiniteSet(1, 2, 3))
PowerSet({1, 2, 3})
A power set of an empty set:
>>> PowerSet(S.EmptySet)
PowerSet(EmptySet)
>>> PowerSet(PowerSet(S.EmptySet))
PowerSet(PowerSet(EmptySet))
A power set of an infinite set:
>>> PowerSet(S.Reals)
PowerSet(Reals)
Evaluating the power set of a finite set to its explicit form:
>>> PowerSet(FiniteSet(1, 2, 3)).rewrite(FiniteSet)
FiniteSet(EmptySet, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3})
References
==========
.. [1] https://en.wikipedia.org/wiki/Power_set
.. [2] https://en.wikipedia.org/wiki/Axiom_of_power_set
"""
def __new__(cls, arg, evaluate=None):
if evaluate is None:
evaluate=global_parameters.evaluate
arg = _sympify(arg)
if not isinstance(arg, Set):
raise ValueError('{} must be a set.'.format(arg))
return super().__new__(cls, arg)
@property
def arg(self):
return self.args[0]
def _eval_rewrite_as_FiniteSet(self, *args, **kwargs):
arg = self.arg
if arg.is_FiniteSet:
return arg.powerset()
return None
@_sympifyit('other', NotImplemented)
def _contains(self, other):
if not isinstance(other, Set):
return None
return fuzzy_bool(self.arg.is_superset(other))
def _eval_is_subset(self, other):
if isinstance(other, PowerSet):
return self.arg.is_subset(other.arg)
def __len__(self):
return 2 ** len(self.arg)
def __iter__(self):
found = [S.EmptySet]
yield S.EmptySet
for x in self.arg:
temp = []
x = FiniteSet(x)
for y in found:
new = x + y
yield new
temp.append(new)
found.extend(temp)
@property
def kind(self):
return SetKind(self.arg.kind)