ai-content-maker/.venv/Lib/site-packages/tensorboard/plugins/hparams/summary_v2.py

599 lines
20 KiB
Python

# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Experimental public APIs for the HParams plugin.
These are porcelain on top of `api_pb2` (`api.proto`) and `summary.py`.
"""
import abc
import hashlib
import json
import random
import time
import numpy as np
from tensorboard.compat import tf2 as tf
from tensorboard.compat.proto import summary_pb2
from tensorboard.plugins.hparams import api_pb2
from tensorboard.plugins.hparams import metadata
from tensorboard.plugins.hparams import plugin_data_pb2
def hparams(hparams, trial_id=None, start_time_secs=None):
# NOTE: Keep docs in sync with `hparams_pb` below.
"""Write hyperparameter values for a single trial.
Args:
hparams: A `dict` mapping hyperparameters to the values used in this
trial. Keys should be the names of `HParam` objects used in an
experiment, or the `HParam` objects themselves. Values should be
Python `bool`, `int`, `float`, or `string` values, depending on
the type of the hyperparameter. The corresponding numpy types,
like `np.float32`, are also permitted.
trial_id: An optional `str` ID for the set of hyperparameter values
used in this trial. Defaults to a hash of the hyperparameters.
start_time_secs: The time that this trial started training, as
seconds since epoch. Defaults to the current time.
Returns:
A tensor whose value is `True` on success, or `False` if no summary
was written because no default summary writer was available.
"""
pb = hparams_pb(
hparams=hparams,
trial_id=trial_id,
start_time_secs=start_time_secs,
)
return _write_summary("hparams", pb)
def hparams_pb(hparams, trial_id=None, start_time_secs=None):
# NOTE: Keep docs in sync with `hparams` above.
"""Create a summary encoding hyperparameter values for a single trial.
Args:
hparams: A `dict` mapping hyperparameters to the values used in this
trial. Keys should be the names of `HParam` objects used in an
experiment, or the `HParam` objects themselves. Values should be
Python `bool`, `int`, `float`, or `string` values, depending on
the type of the hyperparameter.
trial_id: An optional `str` ID for the set of hyperparameter values
used in this trial. Defaults to a hash of the hyperparameters.
start_time_secs: The time that this trial started training, as
seconds since epoch. Defaults to the current time.
Returns:
A TensorBoard `summary_pb2.Summary` message.
"""
if start_time_secs is None:
start_time_secs = time.time()
hparams = _normalize_hparams(hparams)
group_name = _derive_session_group_name(trial_id, hparams)
session_start_info = plugin_data_pb2.SessionStartInfo(
group_name=group_name,
start_time_secs=start_time_secs,
)
for hp_name in sorted(hparams):
hp_value = hparams[hp_name]
if isinstance(hp_value, bool):
session_start_info.hparams[hp_name].bool_value = hp_value
elif isinstance(hp_value, (float, int)):
session_start_info.hparams[hp_name].number_value = hp_value
elif isinstance(hp_value, str):
session_start_info.hparams[hp_name].string_value = hp_value
else:
raise TypeError(
"hparams[%r] = %r, of unsupported type %r"
% (hp_name, hp_value, type(hp_value))
)
return _summary_pb(
metadata.SESSION_START_INFO_TAG,
plugin_data_pb2.HParamsPluginData(
session_start_info=session_start_info
),
)
def hparams_config(hparams, metrics, time_created_secs=None):
# NOTE: Keep docs in sync with `hparams_config_pb` below.
"""Write a top-level experiment configuration.
This configuration describes the hyperparameters and metrics that will
be tracked in the experiment, but does not record any actual values of
those hyperparameters and metrics. It can be created before any models
are actually trained.
Args:
hparams: A list of `HParam` values.
metrics: A list of `Metric` values.
time_created_secs: The time that this experiment was created, as
seconds since epoch. Defaults to the current time.
Returns:
A tensor whose value is `True` on success, or `False` if no summary
was written because no default summary writer was available.
"""
pb = hparams_config_pb(
hparams=hparams,
metrics=metrics,
time_created_secs=time_created_secs,
)
return _write_summary("hparams_config", pb)
def hparams_config_pb(hparams, metrics, time_created_secs=None):
# NOTE: Keep docs in sync with `hparams_config` above.
"""Create a top-level experiment configuration.
This configuration describes the hyperparameters and metrics that will
be tracked in the experiment, but does not record any actual values of
those hyperparameters and metrics. It can be created before any models
are actually trained.
Args:
hparams: A list of `HParam` values.
metrics: A list of `Metric` values.
time_created_secs: The time that this experiment was created, as
seconds since epoch. Defaults to the current time.
Returns:
A TensorBoard `summary_pb2.Summary` message.
"""
hparam_infos = []
for hparam in hparams:
info = api_pb2.HParamInfo(
name=hparam.name,
description=hparam.description,
display_name=hparam.display_name,
)
domain = hparam.domain
if domain is not None:
domain.update_hparam_info(info)
hparam_infos.append(info)
metric_infos = [metric.as_proto() for metric in metrics]
experiment = api_pb2.Experiment(
hparam_infos=hparam_infos,
metric_infos=metric_infos,
time_created_secs=time_created_secs,
)
return _summary_pb(
metadata.EXPERIMENT_TAG,
plugin_data_pb2.HParamsPluginData(experiment=experiment),
)
def _normalize_hparams(hparams):
"""Normalize a dict keyed by `HParam`s and/or raw strings.
Args:
hparams: A `dict` whose keys are `HParam` objects and/or strings
representing hyperparameter names, and whose values are
hyperparameter values. No two keys may have the same name.
Returns:
A `dict` whose keys are hyperparameter names (as strings) and whose
values are the corresponding hyperparameter values, after numpy
normalization (see `_normalize_numpy_value`).
Raises:
ValueError: If two entries in `hparams` share the same
hyperparameter name.
"""
result = {}
for (k, v) in hparams.items():
if isinstance(k, HParam):
k = k.name
if k in result:
raise ValueError("multiple values specified for hparam %r" % (k,))
result[k] = _normalize_numpy_value(v)
return result
def _normalize_numpy_value(value):
"""Convert a Python or Numpy scalar to a Python scalar.
For instance, `3.0`, `np.float32(3.0)`, and `np.float64(3.0)` all
map to `3.0`.
Args:
value: A Python scalar (`int`, `float`, `str`, or `bool`) or
rank-0 `numpy` equivalent (e.g., `np.int64`, `np.float32`).
Returns:
A Python scalar equivalent to `value`.
"""
if isinstance(value, np.generic):
return value.item()
else:
return value
def _derive_session_group_name(trial_id, hparams):
if trial_id is not None:
if not isinstance(trial_id, str):
raise TypeError(
"`trial_id` should be a `str`, but got: %r" % (trial_id,)
)
return trial_id
# Use `json.dumps` rather than `str` to ensure invariance under string
# type (incl. across Python versions) and dict iteration order.
jparams = json.dumps(hparams, sort_keys=True, separators=(",", ":"))
return hashlib.sha256(jparams.encode("utf-8")).hexdigest()
def _write_summary(name, pb):
"""Write a summary, returning the writing op.
Args:
name: As passed to `summary_scope`.
pb: A `summary_pb2.Summary` message.
Returns:
A tensor whose value is `True` on success, or `False` if no summary
was written because no default summary writer was available.
"""
raw_pb = pb.SerializeToString()
summary_scope = (
getattr(tf.summary.experimental, "summary_scope", None)
or tf.summary.summary_scope
)
with summary_scope(name):
return tf.summary.experimental.write_raw_pb(raw_pb, step=0)
def _summary_pb(tag, hparams_plugin_data):
"""Create a summary holding the given `HParamsPluginData` message.
Args:
tag: The `str` tag to use.
hparams_plugin_data: The `HParamsPluginData` message to use.
Returns:
A TensorBoard `summary_pb2.Summary` message.
"""
summary = summary_pb2.Summary()
summary_metadata = metadata.create_summary_metadata(hparams_plugin_data)
value = summary.value.add(
tag=tag, metadata=summary_metadata, tensor=metadata.NULL_TENSOR
)
return summary
class HParam:
"""A hyperparameter in an experiment.
This class describes a hyperparameter in the abstract. It ranges
over a domain of values, but is not bound to any particular value.
"""
def __init__(self, name, domain=None, display_name=None, description=None):
"""Create a hyperparameter object.
Args:
name: A string ID for this hyperparameter, which should be unique
within an experiment.
domain: An optional `Domain` object describing the values that
this hyperparameter can take on.
display_name: An optional human-readable display name (`str`).
description: An optional Markdown string describing this
hyperparameter.
Raises:
ValueError: If `domain` is not a `Domain`.
"""
self._name = name
self._domain = domain
self._display_name = display_name
self._description = description
if not isinstance(self._domain, (Domain, type(None))):
raise ValueError("not a domain: %r" % (self._domain,))
def __str__(self):
return "<HParam %r: %s>" % (self._name, self._domain)
def __repr__(self):
fields = [
("name", self._name),
("domain", self._domain),
("display_name", self._display_name),
("description", self._description),
]
fields_string = ", ".join("%s=%r" % (k, v) for (k, v) in fields)
return "HParam(%s)" % fields_string
@property
def name(self):
return self._name
@property
def domain(self):
return self._domain
@property
def display_name(self):
return self._display_name
@property
def description(self):
return self._description
class Domain(metaclass=abc.ABCMeta):
"""The domain of a hyperparameter.
Domains are restricted to values of the simple types `float`, `int`,
`str`, and `bool`.
"""
@abc.abstractproperty
def dtype(self):
"""Data type of this domain: `float`, `int`, `str`, or `bool`."""
pass
@abc.abstractmethod
def sample_uniform(self, rng=random):
"""Sample a value from this domain uniformly at random.
Args:
rng: A `random.Random` interface; defaults to the `random` module
itself.
Raises:
IndexError: If the domain is empty.
"""
pass
@abc.abstractmethod
def update_hparam_info(self, hparam_info):
"""Update an `HParamInfo` proto to include this domain.
This should update the `type` field on the proto and exactly one of
the `domain` variants on the proto.
Args:
hparam_info: An `api_pb2.HParamInfo` proto to modify.
"""
pass
class IntInterval(Domain):
"""A domain that takes on all integer values in a closed interval."""
def __init__(self, min_value=None, max_value=None):
"""Create an `IntInterval`.
Args:
min_value: The lower bound (inclusive) of the interval.
max_value: The upper bound (inclusive) of the interval.
Raises:
TypeError: If `min_value` or `max_value` is not an `int`.
ValueError: If `min_value > max_value`.
"""
if not isinstance(min_value, int):
raise TypeError("min_value must be an int: %r" % (min_value,))
if not isinstance(max_value, int):
raise TypeError("max_value must be an int: %r" % (max_value,))
if min_value > max_value:
raise ValueError("%r > %r" % (min_value, max_value))
self._min_value = min_value
self._max_value = max_value
def __str__(self):
return "[%s, %s]" % (self._min_value, self._max_value)
def __repr__(self):
return "IntInterval(%r, %r)" % (self._min_value, self._max_value)
@property
def dtype(self):
return int
@property
def min_value(self):
return self._min_value
@property
def max_value(self):
return self._max_value
def sample_uniform(self, rng=random):
return rng.randint(self._min_value, self._max_value)
def update_hparam_info(self, hparam_info):
hparam_info.type = (
api_pb2.DATA_TYPE_FLOAT64
) # TODO(#1998): Add int dtype.
hparam_info.domain_interval.min_value = self._min_value
hparam_info.domain_interval.max_value = self._max_value
class RealInterval(Domain):
"""A domain that takes on all real values in a closed interval."""
def __init__(self, min_value=None, max_value=None):
"""Create a `RealInterval`.
Args:
min_value: The lower bound (inclusive) of the interval.
max_value: The upper bound (inclusive) of the interval.
Raises:
TypeError: If `min_value` or `max_value` is not an `float`.
ValueError: If `min_value > max_value`.
"""
if not isinstance(min_value, float):
raise TypeError("min_value must be a float: %r" % (min_value,))
if not isinstance(max_value, float):
raise TypeError("max_value must be a float: %r" % (max_value,))
if min_value > max_value:
raise ValueError("%r > %r" % (min_value, max_value))
self._min_value = min_value
self._max_value = max_value
def __str__(self):
return "[%s, %s]" % (self._min_value, self._max_value)
def __repr__(self):
return "RealInterval(%r, %r)" % (self._min_value, self._max_value)
@property
def dtype(self):
return float
@property
def min_value(self):
return self._min_value
@property
def max_value(self):
return self._max_value
def sample_uniform(self, rng=random):
return rng.uniform(self._min_value, self._max_value)
def update_hparam_info(self, hparam_info):
hparam_info.type = api_pb2.DATA_TYPE_FLOAT64
hparam_info.domain_interval.min_value = self._min_value
hparam_info.domain_interval.max_value = self._max_value
class Discrete(Domain):
"""A domain that takes on a fixed set of values.
These values may be of any (single) domain type.
"""
def __init__(self, values, dtype=None):
"""Construct a discrete domain.
Args:
values: A iterable of the values in this domain.
dtype: The Python data type of values in this domain: one of
`int`, `float`, `bool`, or `str`. If `values` is non-empty,
`dtype` may be `None`, in which case it will be inferred as the
type of the first element of `values`.
Raises:
ValueError: If `values` is empty but no `dtype` is specified.
ValueError: If `dtype` or its inferred value is not `int`,
`float`, `bool`, or `str`.
TypeError: If an element of `values` is not an instance of
`dtype`.
"""
self._values = list(values)
if dtype is None:
if self._values:
dtype = type(self._values[0])
else:
raise ValueError("Empty domain with no dtype specified")
if dtype not in (int, float, bool, str):
raise ValueError("Unknown dtype: %r" % (dtype,))
self._dtype = dtype
for value in self._values:
if not isinstance(value, self._dtype):
raise TypeError(
"dtype mismatch: not isinstance(%r, %s)"
% (value, self._dtype.__name__)
)
self._values.sort()
def __str__(self):
return "{%s}" % (", ".join(repr(x) for x in self._values))
def __repr__(self):
return "Discrete(%r)" % (self._values,)
@property
def dtype(self):
return self._dtype
@property
def values(self):
return list(self._values)
def sample_uniform(self, rng=random):
return rng.choice(self._values)
def update_hparam_info(self, hparam_info):
hparam_info.type = {
int: api_pb2.DATA_TYPE_FLOAT64, # TODO(#1998): Add int dtype.
float: api_pb2.DATA_TYPE_FLOAT64,
bool: api_pb2.DATA_TYPE_BOOL,
str: api_pb2.DATA_TYPE_STRING,
}[self._dtype]
hparam_info.ClearField("domain_discrete")
hparam_info.domain_discrete.extend(self._values)
class Metric:
"""A metric in an experiment.
A metric is a real-valued function of a model. Each metric is
associated with a TensorBoard scalar summary, which logs the
metric's value as the model trains.
"""
TRAINING = api_pb2.DATASET_TRAINING
VALIDATION = api_pb2.DATASET_VALIDATION
def __init__(
self,
tag,
group=None,
display_name=None,
description=None,
dataset_type=None,
):
"""
Args:
tag: The tag name of the scalar summary that corresponds to this
metric (as a `str`).
group: An optional string listing the subdirectory under the
session's log directory containing summaries for this metric.
For instance, if summaries for training runs are written to
events files in `ROOT_LOGDIR/SESSION_ID/train`, then `group`
should be `"train"`. Defaults to the empty string: i.e.,
summaries are expected to be written to the session logdir.
display_name: An optional human-readable display name.
description: An optional Markdown string with a human-readable
description of this metric, to appear in TensorBoard.
dataset_type: Either `Metric.TRAINING` or `Metric.VALIDATION`, or
`None`.
"""
self._tag = tag
self._group = group
self._display_name = display_name
self._description = description
self._dataset_type = dataset_type
if self._dataset_type not in (None, Metric.TRAINING, Metric.VALIDATION):
raise ValueError("invalid dataset type: %r" % (self._dataset_type,))
def as_proto(self):
return api_pb2.MetricInfo(
name=api_pb2.MetricName(
group=self._group,
tag=self._tag,
),
display_name=self._display_name,
description=self._description,
dataset_type=self._dataset_type,
)