ai-content-maker/.venv/Lib/site-packages/tensorboard/plugins/scalar/summary.py

112 lines
3.9 KiB
Python

# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Scalar summaries and TensorFlow operations to create them.
A scalar summary stores a single floating-point value, as a rank-0
tensor.
"""
import numpy as np
from tensorboard.plugins.scalar import metadata
from tensorboard.plugins.scalar import summary_v2
# Export V2 versions.
scalar = summary_v2.scalar
scalar_pb = summary_v2.scalar_pb
def op(name, data, display_name=None, description=None, collections=None):
"""Create a legacy scalar summary op.
Arguments:
name: A unique name for the generated summary node.
data: A real numeric rank-0 `Tensor`. Must have `dtype` castable
to `float32`.
display_name: Optional name for this summary in TensorBoard, as a
constant `str`. Defaults to `name`.
description: Optional long-form description for this summary, as a
constant `str`. Markdown is supported. Defaults to empty.
collections: Optional list of graph collections keys. The new
summary op is added to these collections. Defaults to
`[Graph Keys.SUMMARIES]`.
Returns:
A TensorFlow summary op.
"""
# TODO(nickfelt): remove on-demand imports once dep situation is fixed.
import tensorflow.compat.v1 as tf
if display_name is None:
display_name = name
summary_metadata = metadata.create_summary_metadata(
display_name=display_name, description=description
)
with tf.name_scope(name):
with tf.control_dependencies([tf.assert_scalar(data)]):
return tf.summary.tensor_summary(
name="scalar_summary",
tensor=tf.cast(data, tf.float32),
collections=collections,
summary_metadata=summary_metadata,
)
def pb(name, data, display_name=None, description=None):
"""Create a legacy scalar summary protobuf.
Arguments:
name: A unique name for the generated summary, including any desired
name scopes.
data: A rank-0 `np.array` or array-like form (so raw `int`s and
`float`s are fine, too).
display_name: Optional name for this summary in TensorBoard, as a
`str`. Defaults to `name`.
description: Optional long-form description for this summary, as a
`str`. Markdown is supported. Defaults to empty.
Returns:
A `tf.Summary` protobuf object.
"""
# TODO(nickfelt): remove on-demand imports once dep situation is fixed.
import tensorflow.compat.v1 as tf
data = np.array(data)
if data.shape != ():
raise ValueError(
"Expected scalar shape for data, saw shape: %s." % data.shape
)
if data.dtype.kind not in ("b", "i", "u", "f"): # bool, int, uint, float
raise ValueError("Cast %s to float is not supported" % data.dtype.name)
tensor = tf.make_tensor_proto(data.astype(np.float32))
if display_name is None:
display_name = name
summary_metadata = metadata.create_summary_metadata(
display_name=display_name, description=description
)
tf_summary_metadata = tf.SummaryMetadata.FromString(
summary_metadata.SerializeToString()
)
summary = tf.Summary()
summary.value.add(
tag="%s/scalar_summary" % name,
metadata=tf_summary_metadata,
tensor=tensor,
)
return summary