123 lines
4.2 KiB
Python
123 lines
4.2 KiB
Python
from typing import Dict, Iterator, List, Optional, Tuple, Union
|
|
|
|
from tokenizers import AddedToken, Tokenizer, decoders, pre_tokenizers, processors, trainers
|
|
from tokenizers.models import BPE
|
|
from tokenizers.normalizers import Lowercase, Sequence, unicode_normalizer_from_str
|
|
|
|
from .base_tokenizer import BaseTokenizer
|
|
|
|
|
|
class ByteLevelBPETokenizer(BaseTokenizer):
|
|
"""ByteLevelBPETokenizer
|
|
|
|
Represents a Byte-level BPE as introduced by OpenAI with their GPT-2 model
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
vocab: Optional[Union[str, Dict[str, int]]] = None,
|
|
merges: Optional[Union[str, Dict[Tuple[int, int], Tuple[int, int]]]] = None,
|
|
add_prefix_space: bool = False,
|
|
lowercase: bool = False,
|
|
dropout: Optional[float] = None,
|
|
unicode_normalizer: Optional[str] = None,
|
|
continuing_subword_prefix: Optional[str] = None,
|
|
end_of_word_suffix: Optional[str] = None,
|
|
trim_offsets: bool = False,
|
|
):
|
|
if vocab is not None and merges is not None:
|
|
tokenizer = Tokenizer(
|
|
BPE(
|
|
vocab,
|
|
merges,
|
|
dropout=dropout,
|
|
continuing_subword_prefix=continuing_subword_prefix or "",
|
|
end_of_word_suffix=end_of_word_suffix or "",
|
|
)
|
|
)
|
|
else:
|
|
tokenizer = Tokenizer(BPE())
|
|
|
|
# Check for Unicode normalization first (before everything else)
|
|
normalizers = []
|
|
|
|
if unicode_normalizer:
|
|
normalizers += [unicode_normalizer_from_str(unicode_normalizer)]
|
|
|
|
if lowercase:
|
|
normalizers += [Lowercase()]
|
|
|
|
# Create the normalizer structure
|
|
if len(normalizers) > 0:
|
|
if len(normalizers) > 1:
|
|
tokenizer.normalizer = Sequence(normalizers)
|
|
else:
|
|
tokenizer.normalizer = normalizers[0]
|
|
|
|
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=add_prefix_space)
|
|
tokenizer.decoder = decoders.ByteLevel()
|
|
tokenizer.post_processor = processors.ByteLevel(trim_offsets=trim_offsets)
|
|
|
|
parameters = {
|
|
"model": "ByteLevelBPE",
|
|
"add_prefix_space": add_prefix_space,
|
|
"lowercase": lowercase,
|
|
"dropout": dropout,
|
|
"unicode_normalizer": unicode_normalizer,
|
|
"continuing_subword_prefix": continuing_subword_prefix,
|
|
"end_of_word_suffix": end_of_word_suffix,
|
|
"trim_offsets": trim_offsets,
|
|
}
|
|
|
|
super().__init__(tokenizer, parameters)
|
|
|
|
@staticmethod
|
|
def from_file(vocab_filename: str, merges_filename: str, **kwargs):
|
|
vocab, merges = BPE.read_file(vocab_filename, merges_filename)
|
|
return ByteLevelBPETokenizer(vocab, merges, **kwargs)
|
|
|
|
def train(
|
|
self,
|
|
files: Union[str, List[str]],
|
|
vocab_size: int = 30000,
|
|
min_frequency: int = 2,
|
|
show_progress: bool = True,
|
|
special_tokens: List[Union[str, AddedToken]] = [],
|
|
):
|
|
"""Train the model using the given files"""
|
|
|
|
trainer = trainers.BpeTrainer(
|
|
vocab_size=vocab_size,
|
|
min_frequency=min_frequency,
|
|
show_progress=show_progress,
|
|
special_tokens=special_tokens,
|
|
initial_alphabet=pre_tokenizers.ByteLevel.alphabet(),
|
|
)
|
|
if isinstance(files, str):
|
|
files = [files]
|
|
self._tokenizer.train(files, trainer=trainer)
|
|
|
|
def train_from_iterator(
|
|
self,
|
|
iterator: Union[Iterator[str], Iterator[Iterator[str]]],
|
|
vocab_size: int = 30000,
|
|
min_frequency: int = 2,
|
|
show_progress: bool = True,
|
|
special_tokens: List[Union[str, AddedToken]] = [],
|
|
length: Optional[int] = None,
|
|
):
|
|
"""Train the model using the given iterator"""
|
|
|
|
trainer = trainers.BpeTrainer(
|
|
vocab_size=vocab_size,
|
|
min_frequency=min_frequency,
|
|
show_progress=show_progress,
|
|
special_tokens=special_tokens,
|
|
initial_alphabet=pre_tokenizers.ByteLevel.alphabet(),
|
|
)
|
|
self._tokenizer.train_from_iterator(
|
|
iterator,
|
|
trainer=trainer,
|
|
length=length,
|
|
)
|