ai-content-maker/.venv/Lib/site-packages/tokenizers/processors/__init__.pyi

343 lines
11 KiB
Python

# Generated content DO NOT EDIT
class PostProcessor:
"""
Base class for all post-processors
This class is not supposed to be instantiated directly. Instead, any implementation of
a PostProcessor will return an instance of this class when instantiated.
"""
def num_special_tokens_to_add(self, is_pair):
"""
Return the number of special tokens that would be added for single/pair sentences.
Args:
is_pair (:obj:`bool`):
Whether the input would be a pair of sequences
Returns:
:obj:`int`: The number of tokens to add
"""
pass
def process(self, encoding, pair=None, add_special_tokens=True):
"""
Post-process the given encodings, generating the final one
Args:
encoding (:class:`~tokenizers.Encoding`):
The encoding for the first sequence
pair (:class:`~tokenizers.Encoding`, `optional`):
The encoding for the pair sequence
add_special_tokens (:obj:`bool`):
Whether to add the special tokens
Return:
:class:`~tokenizers.Encoding`: The final encoding
"""
pass
class BertProcessing(PostProcessor):
"""
This post-processor takes care of adding the special tokens needed by
a Bert model:
- a SEP token
- a CLS token
Args:
sep (:obj:`Tuple[str, int]`):
A tuple with the string representation of the SEP token, and its id
cls (:obj:`Tuple[str, int]`):
A tuple with the string representation of the CLS token, and its id
"""
def __init__(self, sep, cls):
pass
def num_special_tokens_to_add(self, is_pair):
"""
Return the number of special tokens that would be added for single/pair sentences.
Args:
is_pair (:obj:`bool`):
Whether the input would be a pair of sequences
Returns:
:obj:`int`: The number of tokens to add
"""
pass
def process(self, encoding, pair=None, add_special_tokens=True):
"""
Post-process the given encodings, generating the final one
Args:
encoding (:class:`~tokenizers.Encoding`):
The encoding for the first sequence
pair (:class:`~tokenizers.Encoding`, `optional`):
The encoding for the pair sequence
add_special_tokens (:obj:`bool`):
Whether to add the special tokens
Return:
:class:`~tokenizers.Encoding`: The final encoding
"""
pass
class ByteLevel(PostProcessor):
"""
This post-processor takes care of trimming the offsets.
By default, the ByteLevel BPE might include whitespaces in the produced tokens. If you don't
want the offsets to include these whitespaces, then this PostProcessor must be used.
Args:
trim_offsets (:obj:`bool`):
Whether to trim the whitespaces from the produced offsets.
"""
def __init__(self, trim_offsets=True):
pass
def num_special_tokens_to_add(self, is_pair):
"""
Return the number of special tokens that would be added for single/pair sentences.
Args:
is_pair (:obj:`bool`):
Whether the input would be a pair of sequences
Returns:
:obj:`int`: The number of tokens to add
"""
pass
def process(self, encoding, pair=None, add_special_tokens=True):
"""
Post-process the given encodings, generating the final one
Args:
encoding (:class:`~tokenizers.Encoding`):
The encoding for the first sequence
pair (:class:`~tokenizers.Encoding`, `optional`):
The encoding for the pair sequence
add_special_tokens (:obj:`bool`):
Whether to add the special tokens
Return:
:class:`~tokenizers.Encoding`: The final encoding
"""
pass
class RobertaProcessing(PostProcessor):
"""
This post-processor takes care of adding the special tokens needed by
a Roberta model:
- a SEP token
- a CLS token
It also takes care of trimming the offsets.
By default, the ByteLevel BPE might include whitespaces in the produced tokens. If you don't
want the offsets to include these whitespaces, then this PostProcessor should be initialized
with :obj:`trim_offsets=True`
Args:
sep (:obj:`Tuple[str, int]`):
A tuple with the string representation of the SEP token, and its id
cls (:obj:`Tuple[str, int]`):
A tuple with the string representation of the CLS token, and its id
trim_offsets (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether to trim the whitespaces from the produced offsets.
add_prefix_space (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether the add_prefix_space option was enabled during pre-tokenization. This
is relevant because it defines the way the offsets are trimmed out.
"""
def __init__(self, sep, cls, trim_offsets=True, add_prefix_space=True):
pass
def num_special_tokens_to_add(self, is_pair):
"""
Return the number of special tokens that would be added for single/pair sentences.
Args:
is_pair (:obj:`bool`):
Whether the input would be a pair of sequences
Returns:
:obj:`int`: The number of tokens to add
"""
pass
def process(self, encoding, pair=None, add_special_tokens=True):
"""
Post-process the given encodings, generating the final one
Args:
encoding (:class:`~tokenizers.Encoding`):
The encoding for the first sequence
pair (:class:`~tokenizers.Encoding`, `optional`):
The encoding for the pair sequence
add_special_tokens (:obj:`bool`):
Whether to add the special tokens
Return:
:class:`~tokenizers.Encoding`: The final encoding
"""
pass
class Sequence(PostProcessor):
"""
Sequence Processor
Args:
processors (:obj:`List[PostProcessor]`)
The processors that need to be chained
"""
def __init__(self, processors):
pass
def num_special_tokens_to_add(self, is_pair):
"""
Return the number of special tokens that would be added for single/pair sentences.
Args:
is_pair (:obj:`bool`):
Whether the input would be a pair of sequences
Returns:
:obj:`int`: The number of tokens to add
"""
pass
def process(self, encoding, pair=None, add_special_tokens=True):
"""
Post-process the given encodings, generating the final one
Args:
encoding (:class:`~tokenizers.Encoding`):
The encoding for the first sequence
pair (:class:`~tokenizers.Encoding`, `optional`):
The encoding for the pair sequence
add_special_tokens (:obj:`bool`):
Whether to add the special tokens
Return:
:class:`~tokenizers.Encoding`: The final encoding
"""
pass
class TemplateProcessing(PostProcessor):
"""
Provides a way to specify templates in order to add the special tokens to each
input sequence as relevant.
Let's take :obj:`BERT` tokenizer as an example. It uses two special tokens, used to
delimitate each sequence. :obj:`[CLS]` is always used at the beginning of the first
sequence, and :obj:`[SEP]` is added at the end of both the first, and the pair
sequences. The final result looks like this:
- Single sequence: :obj:`[CLS] Hello there [SEP]`
- Pair sequences: :obj:`[CLS] My name is Anthony [SEP] What is my name? [SEP]`
With the type ids as following::
[CLS] ... [SEP] ... [SEP]
0 0 0 1 1
You can achieve such behavior using a TemplateProcessing::
TemplateProcessing(
single="[CLS] $0 [SEP]",
pair="[CLS] $A [SEP] $B:1 [SEP]:1",
special_tokens=[("[CLS]", 1), ("[SEP]", 0)],
)
In this example, each input sequence is identified using a ``$`` construct. This identifier
lets us specify each input sequence, and the type_id to use. When nothing is specified,
it uses the default values. Here are the different ways to specify it:
- Specifying the sequence, with default ``type_id == 0``: ``$A`` or ``$B``
- Specifying the `type_id` with default ``sequence == A``: ``$0``, ``$1``, ``$2``, ...
- Specifying both: ``$A:0``, ``$B:1``, ...
The same construct is used for special tokens: ``<identifier>(:<type_id>)?``.
**Warning**: You must ensure that you are giving the correct tokens/ids as these
will be added to the Encoding without any further check. If the given ids correspond
to something totally different in a `Tokenizer` using this `PostProcessor`, it
might lead to unexpected results.
Args:
single (:obj:`Template`):
The template used for single sequences
pair (:obj:`Template`):
The template used when both sequences are specified
special_tokens (:obj:`Tokens`):
The list of special tokens used in each sequences
Types:
Template (:obj:`str` or :obj:`List`):
- If a :obj:`str` is provided, the whitespace is used as delimiter between tokens
- If a :obj:`List[str]` is provided, a list of tokens
Tokens (:obj:`List[Union[Tuple[int, str], Tuple[str, int], dict]]`):
- A :obj:`Tuple` with both a token and its associated ID, in any order
- A :obj:`dict` with the following keys:
- "id": :obj:`str` => The special token id, as specified in the Template
- "ids": :obj:`List[int]` => The associated IDs
- "tokens": :obj:`List[str]` => The associated tokens
The given dict expects the provided :obj:`ids` and :obj:`tokens` lists to have
the same length.
"""
def __init__(self, single, pair, special_tokens):
pass
def num_special_tokens_to_add(self, is_pair):
"""
Return the number of special tokens that would be added for single/pair sentences.
Args:
is_pair (:obj:`bool`):
Whether the input would be a pair of sequences
Returns:
:obj:`int`: The number of tokens to add
"""
pass
def process(self, encoding, pair=None, add_special_tokens=True):
"""
Post-process the given encodings, generating the final one
Args:
encoding (:class:`~tokenizers.Encoding`):
The encoding for the first sequence
pair (:class:`~tokenizers.Encoding`, `optional`):
The encoding for the pair sequence
add_special_tokens (:obj:`bool`):
Whether to add the special tokens
Return:
:class:`~tokenizers.Encoding`: The final encoding
"""
pass