ai-content-maker/.venv/Lib/site-packages/torch/_inductor/metrics.py

420 lines
12 KiB
Python

from __future__ import annotations
import csv
import inspect
import os
import re
from dataclasses import dataclass
from functools import lru_cache
from typing import Dict, List, Set, Tuple, TYPE_CHECKING, Union
from torch._inductor import config
from torch._inductor.utils import get_benchmark_name
# Prevent circular import
if TYPE_CHECKING:
from torch._inductor.scheduler import (
BaseSchedulerNode,
ExternKernelSchedulerNode,
NopKernelSchedulerNode,
SchedulerNode,
)
# counter for tracking how many kernels have been generated
generated_kernel_count = 0
generated_cpp_vec_kernel_count = 0
num_bytes_accessed = 0
nodes_num_elem: List[
Tuple[
Union[NopKernelSchedulerNode, SchedulerNode, ExternKernelSchedulerNode],
int,
]
] = []
node_runtimes: List[Tuple[BaseSchedulerNode, float]] = []
# counters for tracking fusions
ir_nodes_pre_fusion = 0
# counters for tracking to_dtype inserted
cpp_to_dtype_count = 0
# counters for tracking cpp_wrapper disabled
disable_cpp_wrapper = 0
# reset all counters
def reset():
global generated_kernel_count
global generated_cpp_vec_kernel_count
global num_bytes_accessed, nodes_num_elem
global ir_nodes_pre_fusion
global cpp_to_dtype_count
global disable_cpp_wrapper
generated_kernel_count = 0
generated_cpp_vec_kernel_count = 0
num_bytes_accessed = 0
nodes_num_elem.clear()
node_runtimes.clear()
ir_nodes_pre_fusion = 0
cpp_to_dtype_count = 0
disable_cpp_wrapper = 0
@dataclass
class CachedMetricsDeltas:
"""
The subset of metrics we want update across cache hits, e.g., the
FxGraphCache.
"""
generated_kernel_count: int
generated_cpp_vec_kernel_count: int
ir_nodes_pre_fusion: int
cpp_to_dtype_count: int
class CachedMetricsHelper:
"""
A helper class to help calculate and apply counter deltas for those
metrics we want to save with cache entries (e.g., FxGraphCache) and
apply on a cache hit.
"""
def __init__(self):
global generated_kernel_count
global generated_cpp_vec_kernel_count
global ir_nodes_pre_fusion
global cpp_to_dtype_count
self.generated_kernel_count = generated_kernel_count
self.generated_cpp_vec_kernel_count = generated_cpp_vec_kernel_count
self.ir_nodes_pre_fusion = ir_nodes_pre_fusion
self.cpp_to_dtype_count = cpp_to_dtype_count
def get_deltas(self) -> CachedMetricsDeltas:
global generated_kernel_count
global generated_cpp_vec_kernel_count
global ir_nodes_pre_fusion
global cpp_to_dtype_count
return CachedMetricsDeltas(
generated_kernel_count - self.generated_kernel_count,
generated_cpp_vec_kernel_count - self.generated_cpp_vec_kernel_count,
ir_nodes_pre_fusion - self.ir_nodes_pre_fusion,
cpp_to_dtype_count - self.cpp_to_dtype_count,
)
@staticmethod
def apply_deltas(delta: CachedMetricsDeltas):
global generated_kernel_count
global generated_cpp_vec_kernel_count
global ir_nodes_pre_fusion
global cpp_to_dtype_count
generated_kernel_count += delta.generated_kernel_count
generated_cpp_vec_kernel_count += delta.generated_cpp_vec_kernel_count
ir_nodes_pre_fusion += delta.ir_nodes_pre_fusion
cpp_to_dtype_count += delta.cpp_to_dtype_count
REGISTERED_METRIC_TABLES: Dict[str, MetricTable] = {}
@dataclass
class MetricTable:
table_name: str
column_names: List[str]
num_rows_added: int = 0
def add_row(self, row_fn):
if self.table_name not in enabled_metric_tables():
return
row_dict = row_fn()
assert len(self.column_names) == len(
row_dict
), f"{len(self.column_names)} v.s. {len(row_dict)}"
assert set(self.column_names) == set(
row_dict.keys()
), f"{set(self.column_names)} v.s. {set(row_dict.keys())}"
row = [
get_benchmark_name(),
]
row += [row_dict[column_name] for column_name in self.column_names]
self._write_row(row)
def output_filename(self):
return f"metric_table_{self.table_name}.csv"
def write_header(self):
filename = self.output_filename()
with open(filename, "w") as fd:
writer = csv.writer(fd, lineterminator="\n")
writer.writerow(["model_name"] + self.column_names)
def _write_row(self, row):
filename = self.output_filename()
if self.num_rows_added == 0 and not os.path.exists(filename):
self.write_header()
self.num_rows_added += 1
for idx, orig_val in enumerate(row):
if isinstance(orig_val, float):
new_val = f"{orig_val:.6f}"
elif orig_val is None:
new_val = ""
else:
new_val = orig_val
row[idx] = new_val
with open(filename, "a") as fd:
writer = csv.writer(fd, lineterminator="\n")
writer.writerow(row)
@staticmethod
def register_table(name, column_names):
table = MetricTable(name, column_names)
REGISTERED_METRIC_TABLES[name] = table
MetricTable.register_table(
"slow_fusion",
[
"kernel1_path",
"kernel1_latency",
"kernel2_path",
"kernel2_latency",
"fused_kernel_path",
"fused_kernel_latency",
"slow_down_ratio",
],
)
# track the fusion statistics for each graph
MetricTable.register_table(
"graph_stats",
[
"graph_id",
"num_nodes_before_fusion",
"num_nodes_after_fusion",
],
)
# track the perf difference between persistent reduction and non-persistent
# reductions
MetricTable.register_table(
"persistent_red_perf",
[
"kernel1_name",
"kernel2_name",
"kernel1_latency",
"kernel2_latency",
"size_hints",
"reduction_hint",
"speedup",
],
)
# Log metadata for pointwise/reduction kernels. E.g., model name, kernel path, numel, rnumel, reduction hint
MetricTable.register_table(
"kernel_metadata",
[
"kernel_name",
"kernel_path",
"kernel_category", # pointwise/reduction/foreach etc.
"size_hints",
"reduction_hint",
"line_of_code",
"num_load",
"num_store",
"num_for_loop",
"num_atomic_add",
"num_args",
# xyz numel can be different to size_hints since size_hints are rounded
# up to the nearest power of 2.
# Inductor kernel will burn in the xyz numel in kernel code for static
# shape kernels.
# Logging them will be helpful to find unaligned shape for reduction
"xnumel",
"ynumel",
"rnumel",
"kernel_args_num_gb",
],
)
def _parse_kernel_fn_code(kernel_module_code):
"""
The kernel_module_code is the python module that contains kernel function code.
kernel function is the proper triton kernel function annotated with
@triton.jit
"""
from .codecache import PyCodeCache
from .wrapper_benchmark import get_triton_kernel
mod = PyCodeCache.load(kernel_module_code)
kernel = get_triton_kernel(mod)
# kernel is a CachingAutotune; kernel.fn is the JITFunction;
# kernel.fn.fn is the function being decorate by triton.jit
return inspect.getsource(kernel.fn.fn)
def _parse_kernel_line_of_code(proper_kernel_fn_code):
"""
Return the line of code for the kernel excluding the decorators.
"""
return len(proper_kernel_fn_code.splitlines())
def _parse_size_hints(kernel_module_code, kernel_category):
if kernel_category == "foreach":
# foreach kernel does not have size_hints
return None
m = re.search(r"size_hints=(\[[0-9, ]*\]),", kernel_module_code)
assert m, "size_hints missing!"
return m.group(1)
def _parse_reduction_hint(kernel_category, kernel_module_code):
if kernel_category not in ("reduction", "persistent_reduction"):
return None
m = re.search(r"reduction_hint=ReductionHint\.(\w*),", kernel_module_code)
assert m, "reduction_hint not found in kernel source code!"
return m.group(1)
def _count_pattern(proper_kernel_fn_code, pattern):
return proper_kernel_fn_code.count(pattern)
def _count_args(proper_kernel_fn_code):
def_line = proper_kernel_fn_code.splitlines()[0]
assert def_line.startswith("def ")
start_idx = def_line.index("(")
end_idx = def_line.index("):")
decl_csv = def_line[start_idx + 1 : end_idx]
comps = decl_csv.split(",")
return len(comps)
def _parse_proper_kernel_fn_code(kernel_fn_code):
"""
Skip decorators.
"""
start_pos = kernel_fn_code.index("def ")
return kernel_fn_code[start_pos:]
def _parse_numel(proper_kernel_fn_code, numel_arg_name):
m = re.search(f"{numel_arg_name} = ([\\d]+)", proper_kernel_fn_code)
if m:
return int(m.group(1))
else:
return None
def _parse_kernel_args_num_gb(kernel_fn_code, kernel_category):
"""
inductor meta looks like:
inductor_meta={... 'mutated_arg_names': [], 'no_x_dim': False, 'kernel_num_gb': 2.0},
"""
m = re.search(r".kernel_num_gb.:\s*([0-9.]+)", kernel_fn_code)
if m:
return float(m.group(1))
else:
"""
There are a few cases that kernel_num_gdb field can be missing:
1. the field will be missing if config.benchmark_kernel and
config.profile_bandwidth are false
2. even if config.benchmark_kernel or config.profile_bandwidth is true.
foreach kernel does not have kernel_num_gb field in the metadata
"""
return None
def log_kernel_metadata(kernel_name, kernel_path, kernel_module_code):
"""
An utility to log kernel metadata. We may parse metadata from kernel source code here.
It's fine to parse the generated kernel code here since the logging is
disabled by default. It would hurt compilation time.
"""
from .wrapper_benchmark import get_kernel_category_by_source_code
kernel_category = get_kernel_category_by_source_code(kernel_module_code)
reduction_hint = _parse_reduction_hint(kernel_category, kernel_module_code)
size_hints = _parse_size_hints(kernel_module_code, kernel_category)
kernel_fn_code = _parse_kernel_fn_code(kernel_module_code)
proper_kernel_fn_code = _parse_proper_kernel_fn_code(kernel_fn_code)
# the line of code excluding the decortors
kernel_line_of_code = _parse_kernel_line_of_code(proper_kernel_fn_code)
get_metric_table("kernel_metadata").add_row(
lambda: {
"kernel_name": kernel_name,
"kernel_path": kernel_path,
"kernel_category": kernel_category,
"size_hints": size_hints,
"reduction_hint": reduction_hint,
"line_of_code": kernel_line_of_code,
"num_load": _count_pattern(proper_kernel_fn_code, "tl.load"),
"num_store": _count_pattern(proper_kernel_fn_code, "tl.store"),
"num_for_loop": _count_pattern(proper_kernel_fn_code, "for "),
"num_atomic_add": _count_pattern(proper_kernel_fn_code, "tl.atomic_add"),
"num_args": _count_args(proper_kernel_fn_code),
"xnumel": _parse_numel(proper_kernel_fn_code, "xnumel"),
"ynumel": _parse_numel(proper_kernel_fn_code, "ynumel"),
"rnumel": _parse_numel(proper_kernel_fn_code, "rnumel"),
"kernel_args_num_gb": _parse_kernel_args_num_gb(
kernel_fn_code, kernel_category
),
}
)
def purge_old_log_files():
"""
Purge the old log file at the beginning when the benchmark script runs.
Should do it in the parent process rather than the child processes running
each individual model.
"""
for name, table in REGISTERED_METRIC_TABLES.items():
if name in enabled_metric_tables():
filename = table.output_filename()
if os.path.exists(filename):
os.unlink(filename)
table.write_header()
@lru_cache
def enabled_metric_tables() -> Set[str]:
config_str = config.enabled_metric_tables
enabled = set()
for name in config_str.split(","):
name = name.strip()
if not name:
continue
assert (
name in REGISTERED_METRIC_TABLES
), f"Metric table name {name} is not registered"
enabled.add(name)
return enabled
def is_metric_table_enabled(name):
return name in enabled_metric_tables()
def get_metric_table(name):
assert name in REGISTERED_METRIC_TABLES, f"Metric table {name} is not defined"
return REGISTERED_METRIC_TABLES[name]