251 lines
9.0 KiB
Python
251 lines
9.0 KiB
Python
import torch
|
|
from torch.fx import GraphModule
|
|
from torch.fx import Node
|
|
|
|
from .pt2e.prepare import prepare
|
|
from .pt2e.qat_utils import (
|
|
_fuse_conv_bn_qat,
|
|
_fold_conv_bn_qat,
|
|
)
|
|
from .pt2e.utils import (
|
|
_get_node_name_to_scope,
|
|
_fuse_conv_bn_,
|
|
_disallow_eval_train,
|
|
)
|
|
from .pt2e.representation import reference_representation_rewrite
|
|
from .quantize_fx import _convert_to_reference_decomposed_fx
|
|
from torch.ao.quantization.quantizer import ( # noqa: F401
|
|
Quantizer,
|
|
QuantizationSpecBase,
|
|
QuantizationSpec,
|
|
FixedQParamsQuantizationSpec,
|
|
SharedQuantizationSpec,
|
|
DerivedQuantizationSpec,
|
|
QuantizationAnnotation,
|
|
)
|
|
from torch.fx.passes.infra.pass_manager import PassManager
|
|
from torch.ao.quantization.pt2e.duplicate_dq_pass import DuplicateDQPass
|
|
from torch.ao.quantization.pt2e.port_metadata_pass import PortNodeMetaForQDQ
|
|
from torch._inductor.constant_folding import constant_fold
|
|
|
|
__all__ = [
|
|
"prepare_pt2e",
|
|
"prepare_qat_pt2e",
|
|
"convert_pt2e",
|
|
]
|
|
|
|
|
|
def prepare_pt2e(
|
|
model: GraphModule,
|
|
quantizer: Quantizer,
|
|
) -> GraphModule:
|
|
"""Prepare a model for post training quantization
|
|
|
|
Args:
|
|
* `model` (torch.fx.GraphModule): a model captured by `torch.export` API
|
|
in the short term we are using `torch._export.capture_pre_autograd_graph`,
|
|
in the long term we'll migrate to some `torch.export` API
|
|
* `quantizer`: A backend specific quantizer that conveys how user want the
|
|
model to be quantized. Tutorial for how to write a quantizer can be found here:
|
|
https://pytorch.org/tutorials/prototype/pt2e_quantizer.html
|
|
|
|
Return:
|
|
A GraphModule with observer (based on quantizer annotation), ready for calibration
|
|
|
|
Example::
|
|
|
|
import torch
|
|
from torch.ao.quantization.quantize_pt2e import prepare_pt2e
|
|
from torch._export import capture_pre_autograd_graph
|
|
from torch.ao.quantization.quantizer import (
|
|
XNNPACKQuantizer,
|
|
get_symmetric_quantization_config,
|
|
)
|
|
|
|
class M(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.linear = torch.nn.Linear(5, 10)
|
|
|
|
def forward(self, x):
|
|
return self.linear(x)
|
|
|
|
# initialize a floating point model
|
|
float_model = M().eval()
|
|
|
|
# define calibration function
|
|
def calibrate(model, data_loader):
|
|
model.eval()
|
|
with torch.no_grad():
|
|
for image, target in data_loader:
|
|
model(image)
|
|
|
|
# Step 1. program capture
|
|
# NOTE: this API will be updated to torch.export API in the future, but the captured
|
|
# result shoud mostly stay the same
|
|
m = capture_pre_autograd_graph(m, *example_inputs)
|
|
# we get a model with aten ops
|
|
|
|
# Step 2. quantization
|
|
# backend developer will write their own Quantizer and expose methods to allow
|
|
# users to express how they
|
|
# want the model to be quantized
|
|
quantizer = XNNPACKQuantizer().set_global(get_symmetric_quantization_config())
|
|
m = prepare_pt2e(m, quantizer)
|
|
|
|
# run calibration
|
|
# calibrate(m, sample_inference_data)
|
|
"""
|
|
torch._C._log_api_usage_once("quantization_api.quantize_pt2e.prepare_pt2e")
|
|
original_graph_meta = model.meta
|
|
node_name_to_scope = _get_node_name_to_scope(model)
|
|
# TODO: check qconfig_mapping to make sure conv and bn are both configured
|
|
# to be quantized before fusion
|
|
# TODO: (maybe) rewrite this with subgraph_rewriter
|
|
_fuse_conv_bn_(model)
|
|
quantizer.transform_for_annotation(model)
|
|
quantizer.annotate(model)
|
|
quantizer.validate(model)
|
|
model = prepare(model, node_name_to_scope, is_qat=False)
|
|
model.meta.update(original_graph_meta)
|
|
model = _disallow_eval_train(model)
|
|
return model
|
|
|
|
def prepare_qat_pt2e(
|
|
model: GraphModule,
|
|
quantizer: Quantizer,
|
|
) -> GraphModule:
|
|
"""Prepare a model for quantization aware training
|
|
|
|
Args:
|
|
* `model` (torch.fx.GraphModule): see :func:`~torch.ao.quantization.quantize_pt2e.prepare_pt2e`
|
|
* `quantizer`: see :func:`~torch.ao.quantization.quantize_pt2e.prepare_pt2e`
|
|
|
|
Return:
|
|
A GraphModule with fake quant modules (based on quantizer annotation), ready for
|
|
quantization aware training
|
|
|
|
Example::
|
|
import torch
|
|
from torch.ao.quantization.quantize_pt2e import prepare_qat_pt2e
|
|
from torch._export import capture_pre_autograd_graph
|
|
from torch.ao.quantization.quantizer import (
|
|
XNNPACKQuantizer,
|
|
get_symmetric_quantization_config,
|
|
)
|
|
|
|
class M(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.linear = torch.nn.Linear(5, 10)
|
|
|
|
def forward(self, x):
|
|
return self.linear(x)
|
|
|
|
# initialize a floating point model
|
|
float_model = M().eval()
|
|
|
|
# define the training loop for quantization aware training
|
|
def train_loop(model, train_data):
|
|
model.train()
|
|
for image, target in data_loader:
|
|
...
|
|
|
|
# Step 1. program capture
|
|
# NOTE: this API will be updated to torch.export API in the future, but the captured
|
|
# result shoud mostly stay the same
|
|
m = capture_pre_autograd_graph(m, *example_inputs)
|
|
# we get a model with aten ops
|
|
|
|
# Step 2. quantization
|
|
# backend developer will write their own Quantizer and expose methods to allow
|
|
# users to express how they
|
|
# want the model to be quantized
|
|
quantizer = XNNPACKQuantizer().set_global(get_symmetric_quantization_config())
|
|
m = prepare_qat_pt2e(m, quantizer)
|
|
|
|
# run quantization aware training
|
|
train_loop(prepared_model, train_loop)
|
|
|
|
"""
|
|
torch._C._log_api_usage_once("quantization_api.quantize_pt2e.prepare_qat_pt2e")
|
|
original_graph_meta = model.meta
|
|
node_name_to_scope = _get_node_name_to_scope(model)
|
|
quantizer.transform_for_annotation(model)
|
|
quantizer.annotate(model)
|
|
quantizer.validate(model)
|
|
# Perform fusion after annotate to avoid quantizing ops in the new
|
|
# subgraph that don't need to be quantized
|
|
# TODO: only fuse if conv and bn are both configured to be quantized
|
|
_fuse_conv_bn_qat(model)
|
|
model = prepare(model, node_name_to_scope, is_qat=True)
|
|
model.meta.update(original_graph_meta)
|
|
model = _disallow_eval_train(model)
|
|
return model
|
|
|
|
_QUANT_OPS = [
|
|
torch.ops.quantized_decomposed.quantize_per_tensor.default,
|
|
torch.ops.quantized_decomposed.quantize_per_tensor.tensor,
|
|
torch.ops.quantized_decomposed.quantize_per_channel.default,
|
|
]
|
|
def _quant_node_constraint(n: Node) -> bool:
|
|
"""If there is any pure ops between get_attr and quantize op they will be const propagated
|
|
e.g. get_attr(weight) -> transpose -> quantize -> dequantize*
|
|
(Note: dequantize op is not going to be constant propagated)
|
|
|
|
This filter is added because we don't want to constant fold the things that are not
|
|
related to quantization
|
|
"""
|
|
return n.op == "call_function" and n.target in _QUANT_OPS
|
|
|
|
def convert_pt2e(
|
|
model: GraphModule,
|
|
use_reference_representation: bool = False,
|
|
fold_quantize: bool = True,
|
|
) -> GraphModule:
|
|
"""Convert a calibrated/trained model to a quantized model
|
|
|
|
Args:
|
|
* `model` (torch.fx.GraphModule): calibrated/trained model
|
|
* `use_reference_representation` (bool): boolean flag to indicate whether to produce referece representation or not
|
|
* `fold_quantize` (bool): boolean flag for whether fold the quantize op or not
|
|
|
|
Returns:
|
|
quantized model, either in q/dq representation or reference representation
|
|
|
|
Example::
|
|
|
|
# prepared_model: the model produced by `prepare_pt2e`/`prepare_qat_pt2e` and calibration/training
|
|
# `convert_pt2e` produces a quantized model that represents quantized computation with
|
|
# quantize dequantize ops and fp32 ops by default.
|
|
# Please refer to
|
|
# https://pytorch.org/tutorials/prototype/pt2e_quant_ptq_static.html#convert-the-calibrated-model-to-a-quantized-model
|
|
# for detailed explanation of output quantized model
|
|
quantized_model = convert_pt2e(prepared_model)
|
|
|
|
""" # flake8: noqa
|
|
torch._C._log_api_usage_once("quantization_api.quantize_pt2e.convert_pt2e")
|
|
if not isinstance(use_reference_representation, bool):
|
|
raise ValueError(
|
|
"Unexpected argument type for `use_reference_representation`, "
|
|
f"please make sure you intend to pass argument {use_reference_representation} to convert_pt2e")
|
|
original_graph_meta = model.meta
|
|
model = _convert_to_reference_decomposed_fx(model)
|
|
model = _fold_conv_bn_qat(model)
|
|
|
|
pm = PassManager([DuplicateDQPass()])
|
|
model = pm(model).graph_module
|
|
|
|
pm = PassManager([PortNodeMetaForQDQ()])
|
|
model = pm(model).graph_module
|
|
|
|
if fold_quantize:
|
|
constant_fold(model, _quant_node_constraint)
|
|
|
|
if use_reference_representation:
|
|
model = reference_representation_rewrite(model)
|
|
|
|
model.meta.update(original_graph_meta)
|
|
model = _disallow_eval_train(model)
|
|
return model
|