ai-content-maker/.venv/Lib/site-packages/torch/distributed/optim/functional_sgd.py

161 lines
5.6 KiB
Python

from typing import Dict, List, Optional
import torch
import torch.optim._functional as F
from torch import Tensor
__all__: List[str] = []
# Define a TorchScript compatible Functional SGD Optimizer
# where we use these optimizer in a functional way.
# Instead of using the `param.grad` when updating parameters,
# we explicitly allow the distributed optimizer pass gradients to
# the `step` function. In this way, we could separate the gradients
# and parameters and allow multithreaded trainer to update the
# parameters without data traces on accumulating to the same .grad.
# NOTE: This should be only used by distributed optimizer internals
# and not meant to expose to the user.
@torch.jit.script
class _FunctionalSGD:
def __init__(
self,
params: List[Tensor],
lr: float = 1e-2,
momentum: float = 0.0,
dampening: float = 0.0,
weight_decay: float = 0.0,
nesterov: bool = False,
maximize: bool = False,
foreach: bool = False,
fused: bool = False,
_allow_empty_param_list: bool = False,
):
self.defaults = {
"lr": lr,
"momentum": momentum,
"dampening": dampening,
"weight_decay": weight_decay,
}
self.nesterov = nesterov
self.maximize = maximize
self.foreach = foreach
self.fused = fused
self.state = torch.jit.annotate(Dict[torch.Tensor, Dict[str, torch.Tensor]], {})
if len(params) == 0 and not _allow_empty_param_list:
raise ValueError("optimizer got an empty parameter list")
# NOTE: we only have one param_group and don't allow user to add additional
# param group as it's not a common use case.
self.param_group = {"params": params}
def step_param(self, param: Tensor, grad: Optional[Tensor]):
"""Similar to self.step, but operates on a single parameter and
its gradient.
"""
# TODO: Once step_param interface is robust, refactor step to call
# step param on each param.
weight_decay = self.defaults["weight_decay"]
momentum = self.defaults["momentum"]
dampening = self.defaults["dampening"]
lr = self.defaults["lr"]
params = [param]
momentum_buffer_list: List[Optional[Tensor]] = []
grads = []
has_sparse_grad = False
if grad is not None:
grads.append(grad)
if grad.is_sparse:
has_sparse_grad = True
if param not in self.state:
self.state[param] = {}
state = self.state[param]
if "momentum_buffer" not in state:
momentum_buffer_list.append(None)
else:
momentum_buffer_list.append(state["momentum_buffer"])
with torch.no_grad():
F.sgd(
params,
grads,
momentum_buffer_list,
weight_decay=weight_decay,
momentum=momentum,
lr=lr,
dampening=dampening,
nesterov=self.nesterov,
maximize=self.maximize,
has_sparse_grad=has_sparse_grad,
foreach=self.foreach,
fused=self.fused,
grad_scale=None,
found_inf=None,
)
# update momentum_buffer in state
state = self.state[param]
momentum_buffer = momentum_buffer_list[0]
if momentum_buffer is not None:
state["momentum_buffer"] = momentum_buffer
def step(self, gradients: List[Optional[Tensor]]):
params = self.param_group["params"]
params_with_grad = []
grads = []
momentum_buffer_list: List[Optional[Tensor]] = []
lr = self.defaults["lr"]
weight_decay = self.defaults["weight_decay"]
momentum = self.defaults["momentum"]
dampening = self.defaults["dampening"]
if len(params) != len(gradients):
raise ValueError(
"the gradients passed in does not equal to the size of the parameters!"
+ f"Params length: {len(params)}. "
+ f"Gradients length: {len(gradients)}"
)
has_sparse_grad = False
for param, gradient in zip(params, gradients):
if gradient is not None:
params_with_grad.append(param)
grads.append(gradient)
if gradient.is_sparse:
has_sparse_grad = True
if param not in self.state:
self.state[param] = {}
state = self.state[param]
if "momentum_buffer" not in state:
momentum_buffer_list.append(None)
else:
momentum_buffer_list.append(state["momentum_buffer"])
with torch.no_grad():
F.sgd(
params_with_grad,
grads,
momentum_buffer_list,
weight_decay=weight_decay,
momentum=momentum,
lr=lr,
dampening=dampening,
nesterov=self.nesterov,
maximize=self.maximize,
has_sparse_grad=has_sparse_grad,
foreach=self.foreach,
fused=self.fused,
grad_scale=None,
found_inf=None,
)
# update momentum_buffers in state
for i, p in enumerate(params_with_grad):
state = self.state[p]
momentum_buffer = momentum_buffer_list[i]
if momentum_buffer is not None:
state["momentum_buffer"] = momentum_buffer