ai-content-maker/.venv/Lib/site-packages/torch/fft/__init__.py

1361 lines
54 KiB
Python

import sys
import torch
from torch._C import _add_docstr, _fft # type: ignore[attr-defined]
from torch._torch_docs import factory_common_args, common_args
__all__ = ['fft', 'ifft', 'fft2', 'ifft2', 'fftn', 'ifftn',
'rfft', 'irfft', 'rfft2', 'irfft2', 'rfftn', 'irfftn',
'hfft', 'ihfft', 'fftfreq', 'rfftfreq', 'fftshift', 'ifftshift',
'Tensor']
Tensor = torch.Tensor
# Note: This not only adds the doc strings for the spectral ops, but
# connects the torch.fft Python namespace to the torch._C._fft builtins.
fft = _add_docstr(_fft.fft_fft, r"""
fft(input, n=None, dim=-1, norm=None, *, out=None) -> Tensor
Computes the one dimensional discrete Fourier transform of :attr:`input`.
Note:
The Fourier domain representation of any real signal satisfies the
Hermitian property: `X[i] = conj(X[-i])`. This function always returns both
the positive and negative frequency terms even though, for real inputs, the
negative frequencies are redundant. :func:`~torch.fft.rfft` returns the
more compact one-sided representation where only the positive frequencies
are returned.
Note:
Supports torch.half and torch.chalf on CUDA with GPU Architecture SM53 or greater.
However it only supports powers of 2 signal length in every transformed dimension.
Args:
input (Tensor): the input tensor
n (int, optional): Signal length. If given, the input will either be zero-padded
or trimmed to this length before computing the FFT.
dim (int, optional): The dimension along which to take the one dimensional FFT.
norm (str, optional): Normalization mode. For the forward transform
(:func:`~torch.fft.fft`), these correspond to:
* ``"forward"`` - normalize by ``1/n``
* ``"backward"`` - no normalization
* ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the FFT orthonormal)
Calling the backward transform (:func:`~torch.fft.ifft`) with the same
normalization mode will apply an overall normalization of ``1/n`` between
the two transforms. This is required to make :func:`~torch.fft.ifft`
the exact inverse.
Default is ``"backward"`` (no normalization).
Keyword args:
{out}
Example:
>>> t = torch.arange(4)
>>> t
tensor([0, 1, 2, 3])
>>> torch.fft.fft(t)
tensor([ 6.+0.j, -2.+2.j, -2.+0.j, -2.-2.j])
>>> t = torch.tensor([0.+1.j, 2.+3.j, 4.+5.j, 6.+7.j])
>>> torch.fft.fft(t)
tensor([12.+16.j, -8.+0.j, -4.-4.j, 0.-8.j])
""".format(**common_args))
ifft = _add_docstr(_fft.fft_ifft, r"""
ifft(input, n=None, dim=-1, norm=None, *, out=None) -> Tensor
Computes the one dimensional inverse discrete Fourier transform of :attr:`input`.
Note:
Supports torch.half and torch.chalf on CUDA with GPU Architecture SM53 or greater.
However it only supports powers of 2 signal length in every transformed dimension.
Args:
input (Tensor): the input tensor
n (int, optional): Signal length. If given, the input will either be zero-padded
or trimmed to this length before computing the IFFT.
dim (int, optional): The dimension along which to take the one dimensional IFFT.
norm (str, optional): Normalization mode. For the backward transform
(:func:`~torch.fft.ifft`), these correspond to:
* ``"forward"`` - no normalization
* ``"backward"`` - normalize by ``1/n``
* ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the IFFT orthonormal)
Calling the forward transform (:func:`~torch.fft.fft`) with the same
normalization mode will apply an overall normalization of ``1/n`` between
the two transforms. This is required to make :func:`~torch.fft.ifft`
the exact inverse.
Default is ``"backward"`` (normalize by ``1/n``).
Keyword args:
{out}
Example:
>>> t = torch.tensor([ 6.+0.j, -2.+2.j, -2.+0.j, -2.-2.j])
>>> torch.fft.ifft(t)
tensor([0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j])
""".format(**common_args))
fft2 = _add_docstr(_fft.fft_fft2, r"""
fft2(input, s=None, dim=(-2, -1), norm=None, *, out=None) -> Tensor
Computes the 2 dimensional discrete Fourier transform of :attr:`input`.
Equivalent to :func:`~torch.fft.fftn` but FFTs only the last two dimensions by default.
Note:
The Fourier domain representation of any real signal satisfies the
Hermitian property: ``X[i, j] = conj(X[-i, -j])``. This
function always returns all positive and negative frequency terms even
though, for real inputs, half of these values are redundant.
:func:`~torch.fft.rfft2` returns the more compact one-sided representation
where only the positive frequencies of the last dimension are returned.
Note:
Supports torch.half and torch.chalf on CUDA with GPU Architecture SM53 or greater.
However it only supports powers of 2 signal length in every transformed dimensions.
Args:
input (Tensor): the input tensor
s (Tuple[int], optional): Signal size in the transformed dimensions.
If given, each dimension ``dim[i]`` will either be zero-padded or
trimmed to the length ``s[i]`` before computing the FFT.
If a length ``-1`` is specified, no padding is done in that dimension.
Default: ``s = [input.size(d) for d in dim]``
dim (Tuple[int], optional): Dimensions to be transformed.
Default: last two dimensions.
norm (str, optional): Normalization mode. For the forward transform
(:func:`~torch.fft.fft2`), these correspond to:
* ``"forward"`` - normalize by ``1/n``
* ``"backward"`` - no normalization
* ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the FFT orthonormal)
Where ``n = prod(s)`` is the logical FFT size.
Calling the backward transform (:func:`~torch.fft.ifft2`) with the same
normalization mode will apply an overall normalization of ``1/n``
between the two transforms. This is required to make
:func:`~torch.fft.ifft2` the exact inverse.
Default is ``"backward"`` (no normalization).
Keyword args:
{out}
Example:
>>> x = torch.rand(10, 10, dtype=torch.complex64)
>>> fft2 = torch.fft.fft2(x)
The discrete Fourier transform is separable, so :func:`~torch.fft.fft2`
here is equivalent to two one-dimensional :func:`~torch.fft.fft` calls:
>>> two_ffts = torch.fft.fft(torch.fft.fft(x, dim=0), dim=1)
>>> torch.testing.assert_close(fft2, two_ffts, check_stride=False)
""".format(**common_args))
ifft2 = _add_docstr(_fft.fft_ifft2, r"""
ifft2(input, s=None, dim=(-2, -1), norm=None, *, out=None) -> Tensor
Computes the 2 dimensional inverse discrete Fourier transform of :attr:`input`.
Equivalent to :func:`~torch.fft.ifftn` but IFFTs only the last two dimensions by default.
Note:
Supports torch.half and torch.chalf on CUDA with GPU Architecture SM53 or greater.
However it only supports powers of 2 signal length in every transformed dimensions.
Args:
input (Tensor): the input tensor
s (Tuple[int], optional): Signal size in the transformed dimensions.
If given, each dimension ``dim[i]`` will either be zero-padded or
trimmed to the length ``s[i]`` before computing the IFFT.
If a length ``-1`` is specified, no padding is done in that dimension.
Default: ``s = [input.size(d) for d in dim]``
dim (Tuple[int], optional): Dimensions to be transformed.
Default: last two dimensions.
norm (str, optional): Normalization mode. For the backward transform
(:func:`~torch.fft.ifft2`), these correspond to:
* ``"forward"`` - no normalization
* ``"backward"`` - normalize by ``1/n``
* ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the IFFT orthonormal)
Where ``n = prod(s)`` is the logical IFFT size.
Calling the forward transform (:func:`~torch.fft.fft2`) with the same
normalization mode will apply an overall normalization of ``1/n`` between
the two transforms. This is required to make :func:`~torch.fft.ifft2`
the exact inverse.
Default is ``"backward"`` (normalize by ``1/n``).
Keyword args:
{out}
Example:
>>> x = torch.rand(10, 10, dtype=torch.complex64)
>>> ifft2 = torch.fft.ifft2(x)
The discrete Fourier transform is separable, so :func:`~torch.fft.ifft2`
here is equivalent to two one-dimensional :func:`~torch.fft.ifft` calls:
>>> two_iffts = torch.fft.ifft(torch.fft.ifft(x, dim=0), dim=1)
>>> torch.testing.assert_close(ifft2, two_iffts, check_stride=False)
""".format(**common_args))
fftn = _add_docstr(_fft.fft_fftn, r"""
fftn(input, s=None, dim=None, norm=None, *, out=None) -> Tensor
Computes the N dimensional discrete Fourier transform of :attr:`input`.
Note:
The Fourier domain representation of any real signal satisfies the
Hermitian property: ``X[i_1, ..., i_n] = conj(X[-i_1, ..., -i_n])``. This
function always returns all positive and negative frequency terms even
though, for real inputs, half of these values are redundant.
:func:`~torch.fft.rfftn` returns the more compact one-sided representation
where only the positive frequencies of the last dimension are returned.
Note:
Supports torch.half and torch.chalf on CUDA with GPU Architecture SM53 or greater.
However it only supports powers of 2 signal length in every transformed dimensions.
Args:
input (Tensor): the input tensor
s (Tuple[int], optional): Signal size in the transformed dimensions.
If given, each dimension ``dim[i]`` will either be zero-padded or
trimmed to the length ``s[i]`` before computing the FFT.
If a length ``-1`` is specified, no padding is done in that dimension.
Default: ``s = [input.size(d) for d in dim]``
dim (Tuple[int], optional): Dimensions to be transformed.
Default: all dimensions, or the last ``len(s)`` dimensions if :attr:`s` is given.
norm (str, optional): Normalization mode. For the forward transform
(:func:`~torch.fft.fftn`), these correspond to:
* ``"forward"`` - normalize by ``1/n``
* ``"backward"`` - no normalization
* ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the FFT orthonormal)
Where ``n = prod(s)`` is the logical FFT size.
Calling the backward transform (:func:`~torch.fft.ifftn`) with the same
normalization mode will apply an overall normalization of ``1/n``
between the two transforms. This is required to make
:func:`~torch.fft.ifftn` the exact inverse.
Default is ``"backward"`` (no normalization).
Keyword args:
{out}
Example:
>>> x = torch.rand(10, 10, dtype=torch.complex64)
>>> fftn = torch.fft.fftn(x)
The discrete Fourier transform is separable, so :func:`~torch.fft.fftn`
here is equivalent to two one-dimensional :func:`~torch.fft.fft` calls:
>>> two_ffts = torch.fft.fft(torch.fft.fft(x, dim=0), dim=1)
>>> torch.testing.assert_close(fftn, two_ffts, check_stride=False)
""".format(**common_args))
ifftn = _add_docstr(_fft.fft_ifftn, r"""
ifftn(input, s=None, dim=None, norm=None, *, out=None) -> Tensor
Computes the N dimensional inverse discrete Fourier transform of :attr:`input`.
Note:
Supports torch.half and torch.chalf on CUDA with GPU Architecture SM53 or greater.
However it only supports powers of 2 signal length in every transformed dimensions.
Args:
input (Tensor): the input tensor
s (Tuple[int], optional): Signal size in the transformed dimensions.
If given, each dimension ``dim[i]`` will either be zero-padded or
trimmed to the length ``s[i]`` before computing the IFFT.
If a length ``-1`` is specified, no padding is done in that dimension.
Default: ``s = [input.size(d) for d in dim]``
dim (Tuple[int], optional): Dimensions to be transformed.
Default: all dimensions, or the last ``len(s)`` dimensions if :attr:`s` is given.
norm (str, optional): Normalization mode. For the backward transform
(:func:`~torch.fft.ifftn`), these correspond to:
* ``"forward"`` - no normalization
* ``"backward"`` - normalize by ``1/n``
* ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the IFFT orthonormal)
Where ``n = prod(s)`` is the logical IFFT size.
Calling the forward transform (:func:`~torch.fft.fftn`) with the same
normalization mode will apply an overall normalization of ``1/n`` between
the two transforms. This is required to make :func:`~torch.fft.ifftn`
the exact inverse.
Default is ``"backward"`` (normalize by ``1/n``).
Keyword args:
{out}
Example:
>>> x = torch.rand(10, 10, dtype=torch.complex64)
>>> ifftn = torch.fft.ifftn(x)
The discrete Fourier transform is separable, so :func:`~torch.fft.ifftn`
here is equivalent to two one-dimensional :func:`~torch.fft.ifft` calls:
>>> two_iffts = torch.fft.ifft(torch.fft.ifft(x, dim=0), dim=1)
>>> torch.testing.assert_close(ifftn, two_iffts, check_stride=False)
""".format(**common_args))
rfft = _add_docstr(_fft.fft_rfft, r"""
rfft(input, n=None, dim=-1, norm=None, *, out=None) -> Tensor
Computes the one dimensional Fourier transform of real-valued :attr:`input`.
The FFT of a real signal is Hermitian-symmetric, ``X[i] = conj(X[-i])`` so
the output contains only the positive frequencies below the Nyquist frequency.
To compute the full output, use :func:`~torch.fft.fft`
Note:
Supports torch.half on CUDA with GPU Architecture SM53 or greater.
However it only supports powers of 2 signal length in every transformed dimension.
Args:
input (Tensor): the real input tensor
n (int, optional): Signal length. If given, the input will either be zero-padded
or trimmed to this length before computing the real FFT.
dim (int, optional): The dimension along which to take the one dimensional real FFT.
norm (str, optional): Normalization mode. For the forward transform
(:func:`~torch.fft.rfft`), these correspond to:
* ``"forward"`` - normalize by ``1/n``
* ``"backward"`` - no normalization
* ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the FFT orthonormal)
Calling the backward transform (:func:`~torch.fft.irfft`) with the same
normalization mode will apply an overall normalization of ``1/n`` between
the two transforms. This is required to make :func:`~torch.fft.irfft`
the exact inverse.
Default is ``"backward"`` (no normalization).
Keyword args:
{out}
Example:
>>> t = torch.arange(4)
>>> t
tensor([0, 1, 2, 3])
>>> torch.fft.rfft(t)
tensor([ 6.+0.j, -2.+2.j, -2.+0.j])
Compare against the full output from :func:`~torch.fft.fft`:
>>> torch.fft.fft(t)
tensor([ 6.+0.j, -2.+2.j, -2.+0.j, -2.-2.j])
Notice that the symmetric element ``T[-1] == T[1].conj()`` is omitted.
At the Nyquist frequency ``T[-2] == T[2]`` is it's own symmetric pair,
and therefore must always be real-valued.
""".format(**common_args))
irfft = _add_docstr(_fft.fft_irfft, r"""
irfft(input, n=None, dim=-1, norm=None, *, out=None) -> Tensor
Computes the inverse of :func:`~torch.fft.rfft`.
:attr:`input` is interpreted as a one-sided Hermitian signal in the Fourier
domain, as produced by :func:`~torch.fft.rfft`. By the Hermitian property, the
output will be real-valued.
Note:
Some input frequencies must be real-valued to satisfy the Hermitian
property. In these cases the imaginary component will be ignored.
For example, any imaginary component in the zero-frequency term cannot
be represented in a real output and so will always be ignored.
Note:
The correct interpretation of the Hermitian input depends on the length of
the original data, as given by :attr:`n`. This is because each input shape
could correspond to either an odd or even length signal. By default, the
signal is assumed to be even length and odd signals will not round-trip
properly. So, it is recommended to always pass the signal length :attr:`n`.
Note:
Supports torch.half and torch.chalf on CUDA with GPU Architecture SM53 or greater.
However it only supports powers of 2 signal length in every transformed dimension.
With default arguments, size of the transformed dimension should be (2^n + 1) as argument
`n` defaults to even output size = 2 * (transformed_dim_size - 1)
Args:
input (Tensor): the input tensor representing a half-Hermitian signal
n (int, optional): Output signal length. This determines the length of the
output signal. If given, the input will either be zero-padded or trimmed to this
length before computing the real IFFT.
Defaults to even output: ``n=2*(input.size(dim) - 1)``.
dim (int, optional): The dimension along which to take the one dimensional real IFFT.
norm (str, optional): Normalization mode. For the backward transform
(:func:`~torch.fft.irfft`), these correspond to:
* ``"forward"`` - no normalization
* ``"backward"`` - normalize by ``1/n``
* ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the real IFFT orthonormal)
Calling the forward transform (:func:`~torch.fft.rfft`) with the same
normalization mode will apply an overall normalization of ``1/n`` between
the two transforms. This is required to make :func:`~torch.fft.irfft`
the exact inverse.
Default is ``"backward"`` (normalize by ``1/n``).
Keyword args:
{out}
Example:
>>> t = torch.linspace(0, 1, 5)
>>> t
tensor([0.0000, 0.2500, 0.5000, 0.7500, 1.0000])
>>> T = torch.fft.rfft(t)
>>> T
tensor([ 2.5000+0.0000j, -0.6250+0.8602j, -0.6250+0.2031j])
Without specifying the output length to :func:`~torch.fft.irfft`, the output
will not round-trip properly because the input is odd-length:
>>> torch.fft.irfft(T)
tensor([0.1562, 0.3511, 0.7812, 1.2114])
So, it is recommended to always pass the signal length :attr:`n`:
>>> roundtrip = torch.fft.irfft(T, t.numel())
>>> torch.testing.assert_close(roundtrip, t, check_stride=False)
""".format(**common_args))
rfft2 = _add_docstr(_fft.fft_rfft2, r"""
rfft2(input, s=None, dim=(-2, -1), norm=None, *, out=None) -> Tensor
Computes the 2-dimensional discrete Fourier transform of real :attr:`input`.
Equivalent to :func:`~torch.fft.rfftn` but FFTs only the last two dimensions by default.
The FFT of a real signal is Hermitian-symmetric, ``X[i, j] = conj(X[-i, -j])``,
so the full :func:`~torch.fft.fft2` output contains redundant information.
:func:`~torch.fft.rfft2` instead omits the negative frequencies in the last
dimension.
Note:
Supports torch.half on CUDA with GPU Architecture SM53 or greater.
However it only supports powers of 2 signal length in every transformed dimensions.
Args:
input (Tensor): the input tensor
s (Tuple[int], optional): Signal size in the transformed dimensions.
If given, each dimension ``dim[i]`` will either be zero-padded or
trimmed to the length ``s[i]`` before computing the real FFT.
If a length ``-1`` is specified, no padding is done in that dimension.
Default: ``s = [input.size(d) for d in dim]``
dim (Tuple[int], optional): Dimensions to be transformed.
Default: last two dimensions.
norm (str, optional): Normalization mode. For the forward transform
(:func:`~torch.fft.rfft2`), these correspond to:
* ``"forward"`` - normalize by ``1/n``
* ``"backward"`` - no normalization
* ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the real FFT orthonormal)
Where ``n = prod(s)`` is the logical FFT size.
Calling the backward transform (:func:`~torch.fft.irfft2`) with the same
normalization mode will apply an overall normalization of ``1/n`` between
the two transforms. This is required to make :func:`~torch.fft.irfft2`
the exact inverse.
Default is ``"backward"`` (no normalization).
Keyword args:
{out}
Example:
>>> t = torch.rand(10, 10)
>>> rfft2 = torch.fft.rfft2(t)
>>> rfft2.size()
torch.Size([10, 6])
Compared against the full output from :func:`~torch.fft.fft2`, we have all
elements up to the Nyquist frequency.
>>> fft2 = torch.fft.fft2(t)
>>> torch.testing.assert_close(fft2[..., :6], rfft2, check_stride=False)
The discrete Fourier transform is separable, so :func:`~torch.fft.rfft2`
here is equivalent to a combination of :func:`~torch.fft.fft` and
:func:`~torch.fft.rfft`:
>>> two_ffts = torch.fft.fft(torch.fft.rfft(t, dim=1), dim=0)
>>> torch.testing.assert_close(rfft2, two_ffts, check_stride=False)
""".format(**common_args))
irfft2 = _add_docstr(_fft.fft_irfft2, r"""
irfft2(input, s=None, dim=(-2, -1), norm=None, *, out=None) -> Tensor
Computes the inverse of :func:`~torch.fft.rfft2`.
Equivalent to :func:`~torch.fft.irfftn` but IFFTs only the last two dimensions by default.
:attr:`input` is interpreted as a one-sided Hermitian signal in the Fourier
domain, as produced by :func:`~torch.fft.rfft2`. By the Hermitian property, the
output will be real-valued.
Note:
Some input frequencies must be real-valued to satisfy the Hermitian
property. In these cases the imaginary component will be ignored.
For example, any imaginary component in the zero-frequency term cannot
be represented in a real output and so will always be ignored.
Note:
The correct interpretation of the Hermitian input depends on the length of
the original data, as given by :attr:`s`. This is because each input shape
could correspond to either an odd or even length signal. By default, the
signal is assumed to be even length and odd signals will not round-trip
properly. So, it is recommended to always pass the signal shape :attr:`s`.
Note:
Supports torch.half and torch.chalf on CUDA with GPU Architecture SM53 or greater.
However it only supports powers of 2 signal length in every transformed dimensions.
With default arguments, the size of last dimension should be (2^n + 1) as argument
`s` defaults to even output size = 2 * (last_dim_size - 1)
Args:
input (Tensor): the input tensor
s (Tuple[int], optional): Signal size in the transformed dimensions.
If given, each dimension ``dim[i]`` will either be zero-padded or
trimmed to the length ``s[i]`` before computing the real FFT.
If a length ``-1`` is specified, no padding is done in that dimension.
Defaults to even output in the last dimension:
``s[-1] = 2*(input.size(dim[-1]) - 1)``.
dim (Tuple[int], optional): Dimensions to be transformed.
The last dimension must be the half-Hermitian compressed dimension.
Default: last two dimensions.
norm (str, optional): Normalization mode. For the backward transform
(:func:`~torch.fft.irfft2`), these correspond to:
* ``"forward"`` - no normalization
* ``"backward"`` - normalize by ``1/n``
* ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the real IFFT orthonormal)
Where ``n = prod(s)`` is the logical IFFT size.
Calling the forward transform (:func:`~torch.fft.rfft2`) with the same
normalization mode will apply an overall normalization of ``1/n`` between
the two transforms. This is required to make :func:`~torch.fft.irfft2`
the exact inverse.
Default is ``"backward"`` (normalize by ``1/n``).
Keyword args:
{out}
Example:
>>> t = torch.rand(10, 9)
>>> T = torch.fft.rfft2(t)
Without specifying the output length to :func:`~torch.fft.irfft2`, the output
will not round-trip properly because the input is odd-length in the last
dimension:
>>> torch.fft.irfft2(T).size()
torch.Size([10, 8])
So, it is recommended to always pass the signal shape :attr:`s`.
>>> roundtrip = torch.fft.irfft2(T, t.size())
>>> roundtrip.size()
torch.Size([10, 9])
>>> torch.testing.assert_close(roundtrip, t, check_stride=False)
""".format(**common_args))
rfftn = _add_docstr(_fft.fft_rfftn, r"""
rfftn(input, s=None, dim=None, norm=None, *, out=None) -> Tensor
Computes the N-dimensional discrete Fourier transform of real :attr:`input`.
The FFT of a real signal is Hermitian-symmetric,
``X[i_1, ..., i_n] = conj(X[-i_1, ..., -i_n])`` so the full
:func:`~torch.fft.fftn` output contains redundant information.
:func:`~torch.fft.rfftn` instead omits the negative frequencies in the
last dimension.
Note:
Supports torch.half on CUDA with GPU Architecture SM53 or greater.
However it only supports powers of 2 signal length in every transformed dimensions.
Args:
input (Tensor): the input tensor
s (Tuple[int], optional): Signal size in the transformed dimensions.
If given, each dimension ``dim[i]`` will either be zero-padded or
trimmed to the length ``s[i]`` before computing the real FFT.
If a length ``-1`` is specified, no padding is done in that dimension.
Default: ``s = [input.size(d) for d in dim]``
dim (Tuple[int], optional): Dimensions to be transformed.
Default: all dimensions, or the last ``len(s)`` dimensions if :attr:`s` is given.
norm (str, optional): Normalization mode. For the forward transform
(:func:`~torch.fft.rfftn`), these correspond to:
* ``"forward"`` - normalize by ``1/n``
* ``"backward"`` - no normalization
* ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the real FFT orthonormal)
Where ``n = prod(s)`` is the logical FFT size.
Calling the backward transform (:func:`~torch.fft.irfftn`) with the same
normalization mode will apply an overall normalization of ``1/n`` between
the two transforms. This is required to make :func:`~torch.fft.irfftn`
the exact inverse.
Default is ``"backward"`` (no normalization).
Keyword args:
{out}
Example:
>>> t = torch.rand(10, 10)
>>> rfftn = torch.fft.rfftn(t)
>>> rfftn.size()
torch.Size([10, 6])
Compared against the full output from :func:`~torch.fft.fftn`, we have all
elements up to the Nyquist frequency.
>>> fftn = torch.fft.fftn(t)
>>> torch.testing.assert_close(fftn[..., :6], rfftn, check_stride=False)
The discrete Fourier transform is separable, so :func:`~torch.fft.rfftn`
here is equivalent to a combination of :func:`~torch.fft.fft` and
:func:`~torch.fft.rfft`:
>>> two_ffts = torch.fft.fft(torch.fft.rfft(t, dim=1), dim=0)
>>> torch.testing.assert_close(rfftn, two_ffts, check_stride=False)
""".format(**common_args))
irfftn = _add_docstr(_fft.fft_irfftn, r"""
irfftn(input, s=None, dim=None, norm=None, *, out=None) -> Tensor
Computes the inverse of :func:`~torch.fft.rfftn`.
:attr:`input` is interpreted as a one-sided Hermitian signal in the Fourier
domain, as produced by :func:`~torch.fft.rfftn`. By the Hermitian property, the
output will be real-valued.
Note:
Some input frequencies must be real-valued to satisfy the Hermitian
property. In these cases the imaginary component will be ignored.
For example, any imaginary component in the zero-frequency term cannot
be represented in a real output and so will always be ignored.
Note:
The correct interpretation of the Hermitian input depends on the length of
the original data, as given by :attr:`s`. This is because each input shape
could correspond to either an odd or even length signal. By default, the
signal is assumed to be even length and odd signals will not round-trip
properly. So, it is recommended to always pass the signal shape :attr:`s`.
Note:
Supports torch.half and torch.chalf on CUDA with GPU Architecture SM53 or greater.
However it only supports powers of 2 signal length in every transformed dimensions.
With default arguments, the size of last dimension should be (2^n + 1) as argument
`s` defaults to even output size = 2 * (last_dim_size - 1)
Args:
input (Tensor): the input tensor
s (Tuple[int], optional): Signal size in the transformed dimensions.
If given, each dimension ``dim[i]`` will either be zero-padded or
trimmed to the length ``s[i]`` before computing the real FFT.
If a length ``-1`` is specified, no padding is done in that dimension.
Defaults to even output in the last dimension:
``s[-1] = 2*(input.size(dim[-1]) - 1)``.
dim (Tuple[int], optional): Dimensions to be transformed.
The last dimension must be the half-Hermitian compressed dimension.
Default: all dimensions, or the last ``len(s)`` dimensions if :attr:`s` is given.
norm (str, optional): Normalization mode. For the backward transform
(:func:`~torch.fft.irfftn`), these correspond to:
* ``"forward"`` - no normalization
* ``"backward"`` - normalize by ``1/n``
* ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the real IFFT orthonormal)
Where ``n = prod(s)`` is the logical IFFT size.
Calling the forward transform (:func:`~torch.fft.rfftn`) with the same
normalization mode will apply an overall normalization of ``1/n`` between
the two transforms. This is required to make :func:`~torch.fft.irfftn`
the exact inverse.
Default is ``"backward"`` (normalize by ``1/n``).
Keyword args:
{out}
Example:
>>> t = torch.rand(10, 9)
>>> T = torch.fft.rfftn(t)
Without specifying the output length to :func:`~torch.fft.irfft`, the output
will not round-trip properly because the input is odd-length in the last
dimension:
>>> torch.fft.irfftn(T).size()
torch.Size([10, 8])
So, it is recommended to always pass the signal shape :attr:`s`.
>>> roundtrip = torch.fft.irfftn(T, t.size())
>>> roundtrip.size()
torch.Size([10, 9])
>>> torch.testing.assert_close(roundtrip, t, check_stride=False)
""".format(**common_args))
hfft = _add_docstr(_fft.fft_hfft, r"""
hfft(input, n=None, dim=-1, norm=None, *, out=None) -> Tensor
Computes the one dimensional discrete Fourier transform of a Hermitian
symmetric :attr:`input` signal.
Note:
:func:`~torch.fft.hfft`/:func:`~torch.fft.ihfft` are analogous to
:func:`~torch.fft.rfft`/:func:`~torch.fft.irfft`. The real FFT expects
a real signal in the time-domain and gives a Hermitian symmetry in the
frequency-domain. The Hermitian FFT is the opposite; Hermitian symmetric in
the time-domain and real-valued in the frequency-domain. For this reason,
special care needs to be taken with the length argument :attr:`n`, in the
same way as with :func:`~torch.fft.irfft`.
Note:
Because the signal is Hermitian in the time-domain, the result will be
real in the frequency domain. Note that some input frequencies must be
real-valued to satisfy the Hermitian property. In these cases the imaginary
component will be ignored. For example, any imaginary component in
``input[0]`` would result in one or more complex frequency terms which
cannot be represented in a real output and so will always be ignored.
Note:
The correct interpretation of the Hermitian input depends on the length of
the original data, as given by :attr:`n`. This is because each input shape
could correspond to either an odd or even length signal. By default, the
signal is assumed to be even length and odd signals will not round-trip
properly. So, it is recommended to always pass the signal length :attr:`n`.
Note:
Supports torch.half and torch.chalf on CUDA with GPU Architecture SM53 or greater.
However it only supports powers of 2 signal length in every transformed dimension.
With default arguments, size of the transformed dimension should be (2^n + 1) as argument
`n` defaults to even output size = 2 * (transformed_dim_size - 1)
Args:
input (Tensor): the input tensor representing a half-Hermitian signal
n (int, optional): Output signal length. This determines the length of the
real output. If given, the input will either be zero-padded or trimmed to this
length before computing the Hermitian FFT.
Defaults to even output: ``n=2*(input.size(dim) - 1)``.
dim (int, optional): The dimension along which to take the one dimensional Hermitian FFT.
norm (str, optional): Normalization mode. For the forward transform
(:func:`~torch.fft.hfft`), these correspond to:
* ``"forward"`` - normalize by ``1/n``
* ``"backward"`` - no normalization
* ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the Hermitian FFT orthonormal)
Calling the backward transform (:func:`~torch.fft.ihfft`) with the same
normalization mode will apply an overall normalization of ``1/n`` between
the two transforms. This is required to make :func:`~torch.fft.ihfft`
the exact inverse.
Default is ``"backward"`` (no normalization).
Keyword args:
{out}
Example:
Taking a real-valued frequency signal and bringing it into the time domain
gives Hermitian symmetric output:
>>> t = torch.linspace(0, 1, 5)
>>> t
tensor([0.0000, 0.2500, 0.5000, 0.7500, 1.0000])
>>> T = torch.fft.ifft(t)
>>> T
tensor([ 0.5000-0.0000j, -0.1250-0.1720j, -0.1250-0.0406j, -0.1250+0.0406j,
-0.1250+0.1720j])
Note that ``T[1] == T[-1].conj()`` and ``T[2] == T[-2].conj()`` is
redundant. We can thus compute the forward transform without considering
negative frequencies:
>>> torch.fft.hfft(T[:3], n=5)
tensor([0.0000, 0.2500, 0.5000, 0.7500, 1.0000])
Like with :func:`~torch.fft.irfft`, the output length must be given in order
to recover an even length output:
>>> torch.fft.hfft(T[:3])
tensor([0.1250, 0.2809, 0.6250, 0.9691])
""".format(**common_args))
ihfft = _add_docstr(_fft.fft_ihfft, r"""
ihfft(input, n=None, dim=-1, norm=None, *, out=None) -> Tensor
Computes the inverse of :func:`~torch.fft.hfft`.
:attr:`input` must be a real-valued signal, interpreted in the Fourier domain.
The IFFT of a real signal is Hermitian-symmetric, ``X[i] = conj(X[-i])``.
:func:`~torch.fft.ihfft` represents this in the one-sided form where only the
positive frequencies below the Nyquist frequency are included. To compute the
full output, use :func:`~torch.fft.ifft`.
Note:
Supports torch.half on CUDA with GPU Architecture SM53 or greater.
However it only supports powers of 2 signal length in every transformed dimension.
Args:
input (Tensor): the real input tensor
n (int, optional): Signal length. If given, the input will either be zero-padded
or trimmed to this length before computing the Hermitian IFFT.
dim (int, optional): The dimension along which to take the one dimensional Hermitian IFFT.
norm (str, optional): Normalization mode. For the backward transform
(:func:`~torch.fft.ihfft`), these correspond to:
* ``"forward"`` - no normalization
* ``"backward"`` - normalize by ``1/n``
* ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the IFFT orthonormal)
Calling the forward transform (:func:`~torch.fft.hfft`) with the same
normalization mode will apply an overall normalization of ``1/n`` between
the two transforms. This is required to make :func:`~torch.fft.ihfft`
the exact inverse.
Default is ``"backward"`` (normalize by ``1/n``).
Keyword args:
{out}
Example:
>>> t = torch.arange(5)
>>> t
tensor([0, 1, 2, 3, 4])
>>> torch.fft.ihfft(t)
tensor([ 2.0000-0.0000j, -0.5000-0.6882j, -0.5000-0.1625j])
Compare against the full output from :func:`~torch.fft.ifft`:
>>> torch.fft.ifft(t)
tensor([ 2.0000-0.0000j, -0.5000-0.6882j, -0.5000-0.1625j, -0.5000+0.1625j,
-0.5000+0.6882j])
""".format(**common_args))
hfft2 = _add_docstr(_fft.fft_hfft2, r"""
hfft2(input, s=None, dim=(-2, -1), norm=None, *, out=None) -> Tensor
Computes the 2-dimensional discrete Fourier transform of a Hermitian symmetric
:attr:`input` signal. Equivalent to :func:`~torch.fft.hfftn` but only
transforms the last two dimensions by default.
:attr:`input` is interpreted as a one-sided Hermitian signal in the time
domain. By the Hermitian property, the Fourier transform will be real-valued.
Note:
Supports torch.half and torch.chalf on CUDA with GPU Architecture SM53 or greater.
However it only supports powers of 2 signal length in every transformed dimensions.
With default arguments, the size of last dimension should be (2^n + 1) as argument
`s` defaults to even output size = 2 * (last_dim_size - 1)
Args:
input (Tensor): the input tensor
s (Tuple[int], optional): Signal size in the transformed dimensions.
If given, each dimension ``dim[i]`` will either be zero-padded or
trimmed to the length ``s[i]`` before computing the Hermitian FFT.
If a length ``-1`` is specified, no padding is done in that dimension.
Defaults to even output in the last dimension:
``s[-1] = 2*(input.size(dim[-1]) - 1)``.
dim (Tuple[int], optional): Dimensions to be transformed.
The last dimension must be the half-Hermitian compressed dimension.
Default: last two dimensions.
norm (str, optional): Normalization mode. For the forward transform
(:func:`~torch.fft.hfft2`), these correspond to:
* ``"forward"`` - normalize by ``1/n``
* ``"backward"`` - no normalization
* ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the Hermitian FFT orthonormal)
Where ``n = prod(s)`` is the logical FFT size.
Calling the backward transform (:func:`~torch.fft.ihfft2`) with the same
normalization mode will apply an overall normalization of ``1/n`` between
the two transforms. This is required to make :func:`~torch.fft.ihfft2`
the exact inverse.
Default is ``"backward"`` (no normalization).
Keyword args:
{out}
Example:
Starting from a real frequency-space signal, we can generate a
Hermitian-symmetric time-domain signal:
>>> T = torch.rand(10, 9)
>>> t = torch.fft.ihfft2(T)
Without specifying the output length to :func:`~torch.fft.hfftn`, the
output will not round-trip properly because the input is odd-length in the
last dimension:
>>> torch.fft.hfft2(t).size()
torch.Size([10, 10])
So, it is recommended to always pass the signal shape :attr:`s`.
>>> roundtrip = torch.fft.hfft2(t, T.size())
>>> roundtrip.size()
torch.Size([10, 9])
>>> torch.allclose(roundtrip, T)
True
""".format(**common_args))
ihfft2 = _add_docstr(_fft.fft_ihfft2, r"""
ihfft2(input, s=None, dim=(-2, -1), norm=None, *, out=None) -> Tensor
Computes the 2-dimensional inverse discrete Fourier transform of real
:attr:`input`. Equivalent to :func:`~torch.fft.ihfftn` but transforms only the
two last dimensions by default.
Note:
Supports torch.half on CUDA with GPU Architecture SM53 or greater.
However it only supports powers of 2 signal length in every transformed dimensions.
Args:
input (Tensor): the input tensor
s (Tuple[int], optional): Signal size in the transformed dimensions.
If given, each dimension ``dim[i]`` will either be zero-padded or
trimmed to the length ``s[i]`` before computing the Hermitian IFFT.
If a length ``-1`` is specified, no padding is done in that dimension.
Default: ``s = [input.size(d) for d in dim]``
dim (Tuple[int], optional): Dimensions to be transformed.
Default: last two dimensions.
norm (str, optional): Normalization mode. For the backward transform
(:func:`~torch.fft.ihfft2`), these correspond to:
* ``"forward"`` - no normalization
* ``"backward"`` - normalize by ``1/n``
* ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the Hermitian IFFT orthonormal)
Where ``n = prod(s)`` is the logical IFFT size.
Calling the forward transform (:func:`~torch.fft.hfft2`) with the same
normalization mode will apply an overall normalization of ``1/n`` between
the two transforms. This is required to make :func:`~torch.fft.ihfft2`
the exact inverse.
Default is ``"backward"`` (normalize by ``1/n``).
Keyword args:
{out}
Example:
>>> T = torch.rand(10, 10)
>>> t = torch.fft.ihfft2(t)
>>> t.size()
torch.Size([10, 6])
Compared against the full output from :func:`~torch.fft.ifft2`, the
Hermitian time-space signal takes up only half the space.
>>> fftn = torch.fft.ifft2(t)
>>> torch.allclose(fftn[..., :6], rfftn)
True
The discrete Fourier transform is separable, so :func:`~torch.fft.ihfft2`
here is equivalent to a combination of :func:`~torch.fft.ifft` and
:func:`~torch.fft.ihfft`:
>>> two_ffts = torch.fft.ifft(torch.fft.ihfft(t, dim=1), dim=0)
>>> torch.allclose(t, two_ffts)
True
""".format(**common_args))
hfftn = _add_docstr(_fft.fft_hfftn, r"""
hfftn(input, s=None, dim=None, norm=None, *, out=None) -> Tensor
Computes the n-dimensional discrete Fourier transform of a Hermitian symmetric
:attr:`input` signal.
:attr:`input` is interpreted as a one-sided Hermitian signal in the time
domain. By the Hermitian property, the Fourier transform will be real-valued.
Note:
:func:`~torch.fft.hfftn`/:func:`~torch.fft.ihfftn` are analogous to
:func:`~torch.fft.rfftn`/:func:`~torch.fft.irfftn`. The real FFT expects
a real signal in the time-domain and gives Hermitian symmetry in the
frequency-domain. The Hermitian FFT is the opposite; Hermitian symmetric in
the time-domain and real-valued in the frequency-domain. For this reason,
special care needs to be taken with the shape argument :attr:`s`, in the
same way as with :func:`~torch.fft.irfftn`.
Note:
Some input frequencies must be real-valued to satisfy the Hermitian
property. In these cases the imaginary component will be ignored.
For example, any imaginary component in the zero-frequency term cannot
be represented in a real output and so will always be ignored.
Note:
The correct interpretation of the Hermitian input depends on the length of
the original data, as given by :attr:`s`. This is because each input shape
could correspond to either an odd or even length signal. By default, the
signal is assumed to be even length and odd signals will not round-trip
properly. It is recommended to always pass the signal shape :attr:`s`.
Note:
Supports torch.half and torch.chalf on CUDA with GPU Architecture SM53 or greater.
However it only supports powers of 2 signal length in every transformed dimensions.
With default arguments, the size of last dimension should be (2^n + 1) as argument
`s` defaults to even output size = 2 * (last_dim_size - 1)
Args:
input (Tensor): the input tensor
s (Tuple[int], optional): Signal size in the transformed dimensions.
If given, each dimension ``dim[i]`` will either be zero-padded or
trimmed to the length ``s[i]`` before computing the real FFT.
If a length ``-1`` is specified, no padding is done in that dimension.
Defaults to even output in the last dimension:
``s[-1] = 2*(input.size(dim[-1]) - 1)``.
dim (Tuple[int], optional): Dimensions to be transformed.
The last dimension must be the half-Hermitian compressed dimension.
Default: all dimensions, or the last ``len(s)`` dimensions if :attr:`s` is given.
norm (str, optional): Normalization mode. For the forward transform
(:func:`~torch.fft.hfftn`), these correspond to:
* ``"forward"`` - normalize by ``1/n``
* ``"backward"`` - no normalization
* ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the Hermitian FFT orthonormal)
Where ``n = prod(s)`` is the logical FFT size.
Calling the backward transform (:func:`~torch.fft.ihfftn`) with the same
normalization mode will apply an overall normalization of ``1/n`` between
the two transforms. This is required to make :func:`~torch.fft.ihfftn`
the exact inverse.
Default is ``"backward"`` (no normalization).
Keyword args:
{out}
Example:
Starting from a real frequency-space signal, we can generate a
Hermitian-symmetric time-domain signal:
>>> T = torch.rand(10, 9)
>>> t = torch.fft.ihfftn(T)
Without specifying the output length to :func:`~torch.fft.hfftn`, the
output will not round-trip properly because the input is odd-length in the
last dimension:
>>> torch.fft.hfftn(t).size()
torch.Size([10, 10])
So, it is recommended to always pass the signal shape :attr:`s`.
>>> roundtrip = torch.fft.hfftn(t, T.size())
>>> roundtrip.size()
torch.Size([10, 9])
>>> torch.allclose(roundtrip, T)
True
""".format(**common_args))
ihfftn = _add_docstr(_fft.fft_ihfftn, r"""
ihfftn(input, s=None, dim=None, norm=None, *, out=None) -> Tensor
Computes the N-dimensional inverse discrete Fourier transform of real :attr:`input`.
:attr:`input` must be a real-valued signal, interpreted in the Fourier domain.
The n-dimensional IFFT of a real signal is Hermitian-symmetric,
``X[i, j, ...] = conj(X[-i, -j, ...])``. :func:`~torch.fft.ihfftn` represents
this in the one-sided form where only the positive frequencies below the
Nyquist frequency are included in the last signal dimension. To compute the
full output, use :func:`~torch.fft.ifftn`.
Note:
Supports torch.half on CUDA with GPU Architecture SM53 or greater.
However it only supports powers of 2 signal length in every transformed dimensions.
Args:
input (Tensor): the input tensor
s (Tuple[int], optional): Signal size in the transformed dimensions.
If given, each dimension ``dim[i]`` will either be zero-padded or
trimmed to the length ``s[i]`` before computing the Hermitian IFFT.
If a length ``-1`` is specified, no padding is done in that dimension.
Default: ``s = [input.size(d) for d in dim]``
dim (Tuple[int], optional): Dimensions to be transformed.
Default: all dimensions, or the last ``len(s)`` dimensions if :attr:`s` is given.
norm (str, optional): Normalization mode. For the backward transform
(:func:`~torch.fft.ihfftn`), these correspond to:
* ``"forward"`` - no normalization
* ``"backward"`` - normalize by ``1/n``
* ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the Hermitian IFFT orthonormal)
Where ``n = prod(s)`` is the logical IFFT size.
Calling the forward transform (:func:`~torch.fft.hfftn`) with the same
normalization mode will apply an overall normalization of ``1/n`` between
the two transforms. This is required to make :func:`~torch.fft.ihfftn`
the exact inverse.
Default is ``"backward"`` (normalize by ``1/n``).
Keyword args:
{out}
Example:
>>> T = torch.rand(10, 10)
>>> ihfftn = torch.fft.ihfftn(T)
>>> ihfftn.size()
torch.Size([10, 6])
Compared against the full output from :func:`~torch.fft.ifftn`, we have all
elements up to the Nyquist frequency.
>>> ifftn = torch.fft.ifftn(t)
>>> torch.allclose(ifftn[..., :6], ihfftn)
True
The discrete Fourier transform is separable, so :func:`~torch.fft.ihfftn`
here is equivalent to a combination of :func:`~torch.fft.ihfft` and
:func:`~torch.fft.ifft`:
>>> two_iffts = torch.fft.ifft(torch.fft.ihfft(t, dim=1), dim=0)
>>> torch.allclose(ihfftn, two_iffts)
True
""".format(**common_args))
fftfreq = _add_docstr(_fft.fft_fftfreq, r"""
fftfreq(n, d=1.0, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor
Computes the discrete Fourier Transform sample frequencies for a signal of size :attr:`n`.
Note:
By convention, :func:`~torch.fft.fft` returns positive frequency terms
first, followed by the negative frequencies in reverse order, so that
``f[-i]`` for all :math:`0 < i \leq n/2`` in Python gives the negative
frequency terms. For an FFT of length :attr:`n` and with inputs spaced in
length unit :attr:`d`, the frequencies are::
f = [0, 1, ..., (n - 1) // 2, -(n // 2), ..., -1] / (d * n)
Note:
For even lengths, the Nyquist frequency at ``f[n/2]`` can be thought of as
either negative or positive. :func:`~torch.fft.fftfreq` follows NumPy's
convention of taking it to be negative.
Args:
n (int): the FFT length
d (float, optional): The sampling length scale.
The spacing between individual samples of the FFT input.
The default assumes unit spacing, dividing that result by the actual
spacing gives the result in physical frequency units.
Keyword Args:
{out}
{dtype}
{layout}
{device}
{requires_grad}
Example:
>>> torch.fft.fftfreq(5)
tensor([ 0.0000, 0.2000, 0.4000, -0.4000, -0.2000])
For even input, we can see the Nyquist frequency at ``f[2]`` is given as
negative:
>>> torch.fft.fftfreq(4)
tensor([ 0.0000, 0.2500, -0.5000, -0.2500])
""".format(**factory_common_args))
rfftfreq = _add_docstr(_fft.fft_rfftfreq, r"""
rfftfreq(n, d=1.0, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor
Computes the sample frequencies for :func:`~torch.fft.rfft` with a signal of size :attr:`n`.
Note:
:func:`~torch.fft.rfft` returns Hermitian one-sided output, so only the
positive frequency terms are returned. For a real FFT of length :attr:`n`
and with inputs spaced in length unit :attr:`d`, the frequencies are::
f = torch.arange((n + 1) // 2) / (d * n)
Note:
For even lengths, the Nyquist frequency at ``f[n/2]`` can be thought of as
either negative or positive. Unlike :func:`~torch.fft.fftfreq`,
:func:`~torch.fft.rfftfreq` always returns it as positive.
Args:
n (int): the real FFT length
d (float, optional): The sampling length scale.
The spacing between individual samples of the FFT input.
The default assumes unit spacing, dividing that result by the actual
spacing gives the result in physical frequency units.
Keyword Args:
{out}
{dtype}
{layout}
{device}
{requires_grad}
Example:
>>> torch.fft.rfftfreq(5)
tensor([0.0000, 0.2000, 0.4000])
>>> torch.fft.rfftfreq(4)
tensor([0.0000, 0.2500, 0.5000])
Compared to the output from :func:`~torch.fft.fftfreq`, we see that the
Nyquist frequency at ``f[2]`` has changed sign:
>>> torch.fft.fftfreq(4)
tensor([ 0.0000, 0.2500, -0.5000, -0.2500])
""".format(**factory_common_args))
fftshift = _add_docstr(_fft.fft_fftshift, r"""
fftshift(input, dim=None) -> Tensor
Reorders n-dimensional FFT data, as provided by :func:`~torch.fft.fftn`, to have
negative frequency terms first.
This performs a periodic shift of n-dimensional data such that the origin
``(0, ..., 0)`` is moved to the center of the tensor. Specifically, to
``input.shape[dim] // 2`` in each selected dimension.
Note:
By convention, the FFT returns positive frequency terms first, followed by
the negative frequencies in reverse order, so that ``f[-i]`` for all
:math:`0 < i \leq n/2` in Python gives the negative frequency terms.
:func:`~torch.fft.fftshift` rearranges all frequencies into ascending order
from negative to positive with the zero-frequency term in the center.
Note:
For even lengths, the Nyquist frequency at ``f[n/2]`` can be thought of as
either negative or positive. :func:`~torch.fft.fftshift` always puts the
Nyquist term at the 0-index. This is the same convention used by
:func:`~torch.fft.fftfreq`.
Args:
input (Tensor): the tensor in FFT order
dim (int, Tuple[int], optional): The dimensions to rearrange.
Only dimensions specified here will be rearranged, any other dimensions
will be left in their original order.
Default: All dimensions of :attr:`input`.
Example:
>>> f = torch.fft.fftfreq(4)
>>> f
tensor([ 0.0000, 0.2500, -0.5000, -0.2500])
>>> torch.fft.fftshift(f)
tensor([-0.5000, -0.2500, 0.0000, 0.2500])
Also notice that the Nyquist frequency term at ``f[2]`` was moved to the
beginning of the tensor.
This also works for multi-dimensional transforms:
>>> x = torch.fft.fftfreq(5, d=1/5) + 0.1 * torch.fft.fftfreq(5, d=1/5).unsqueeze(1)
>>> x
tensor([[ 0.0000, 1.0000, 2.0000, -2.0000, -1.0000],
[ 0.1000, 1.1000, 2.1000, -1.9000, -0.9000],
[ 0.2000, 1.2000, 2.2000, -1.8000, -0.8000],
[-0.2000, 0.8000, 1.8000, -2.2000, -1.2000],
[-0.1000, 0.9000, 1.9000, -2.1000, -1.1000]])
>>> torch.fft.fftshift(x)
tensor([[-2.2000, -1.2000, -0.2000, 0.8000, 1.8000],
[-2.1000, -1.1000, -0.1000, 0.9000, 1.9000],
[-2.0000, -1.0000, 0.0000, 1.0000, 2.0000],
[-1.9000, -0.9000, 0.1000, 1.1000, 2.1000],
[-1.8000, -0.8000, 0.2000, 1.2000, 2.2000]])
:func:`~torch.fft.fftshift` can also be useful for spatial data. If our
data is defined on a centered grid (``[-(N//2), (N-1)//2]``) then we can
use the standard FFT defined on an uncentered grid (``[0, N)``) by first
applying an :func:`~torch.fft.ifftshift`.
>>> x_centered = torch.arange(-5, 5)
>>> x_uncentered = torch.fft.ifftshift(x_centered)
>>> fft_uncentered = torch.fft.fft(x_uncentered)
Similarly, we can convert the frequency domain components to centered
convention by applying :func:`~torch.fft.fftshift`.
>>> fft_centered = torch.fft.fftshift(fft_uncentered)
The inverse transform, from centered Fourier space back to centered spatial
data, can be performed by applying the inverse shifts in reverse order:
>>> x_centered_2 = torch.fft.fftshift(torch.fft.ifft(torch.fft.ifftshift(fft_centered)))
>>> torch.testing.assert_close(x_centered.to(torch.complex64), x_centered_2, check_stride=False)
""")
ifftshift = _add_docstr(_fft.fft_ifftshift, r"""
ifftshift(input, dim=None) -> Tensor
Inverse of :func:`~torch.fft.fftshift`.
Args:
input (Tensor): the tensor in FFT order
dim (int, Tuple[int], optional): The dimensions to rearrange.
Only dimensions specified here will be rearranged, any other dimensions
will be left in their original order.
Default: All dimensions of :attr:`input`.
Example:
>>> f = torch.fft.fftfreq(5)
>>> f
tensor([ 0.0000, 0.2000, 0.4000, -0.4000, -0.2000])
A round-trip through :func:`~torch.fft.fftshift` and
:func:`~torch.fft.ifftshift` gives the same result:
>>> shifted = torch.fft.fftshift(f)
>>> torch.fft.ifftshift(shifted)
tensor([ 0.0000, 0.2000, 0.4000, -0.4000, -0.2000])
""")