161 lines
5.4 KiB
C++
161 lines
5.4 KiB
C++
#pragma once
|
|
|
|
#include <bitset>
|
|
|
|
#include <ATen/ArrayRef.h>
|
|
#include <ATen/SmallVector.h>
|
|
#include <ATen/Tensor.h>
|
|
|
|
namespace at {
|
|
|
|
// We assume this in a few other places in the codebase,
|
|
// but there isn't a centralized definition.
|
|
constexpr int64_t kVmapMaxTensorDims = 64;
|
|
|
|
// The valid vmap levels range from [0, 64). This effectively means that we
|
|
// support a maximum of 64 nested vmaps.
|
|
constexpr int64_t kVmapNumLevels = 64;
|
|
|
|
// Store this number of elements of BatchDims on the stack. Most people will
|
|
// probably use <= 5 nested vmaps, but adjust this number as necessary.
|
|
constexpr int64_t kBatchDimsStackSize = 5;
|
|
|
|
// a BatchDim represents a "private" dimension on a Tensor created inside of
|
|
// vmap. It is a (level, dim) tuple, with the `dim` indicating which dimension
|
|
// is being vmap'ed over and the `level` being an identifier for which vmap
|
|
// said dimension was created inside. The `dim` corresponds to a "physical
|
|
// dim" - it is a dimension index on the underlying physical tensor that is
|
|
// being vmapped over.
|
|
struct BatchDim {
|
|
BatchDim(int64_t level, int64_t dim) : dim_(dim), level_(level) {}
|
|
int64_t dim() const {
|
|
return dim_;
|
|
}
|
|
int64_t level() const {
|
|
return level_;
|
|
}
|
|
|
|
private:
|
|
int64_t dim_;
|
|
int64_t level_;
|
|
};
|
|
|
|
using BatchDims = SmallVector<BatchDim, kBatchDimsStackSize>;
|
|
using BatchDimsRef = ArrayRef<BatchDim>;
|
|
|
|
// A BatchedTensorImpl holds an underlying Tensor and a list of BatchDim
|
|
// NB: We use the term "BatchedTensor" to mean a Tensor that is backed with a
|
|
// BatchedTensorImpl.
|
|
//
|
|
// The batch dimensions are treated as being "private"; they are not
|
|
// user-visible. For example, in the following Tensor,
|
|
// bt = BatchedTensorImpl(ones(2, 3, 5, 7), [(lvl=1, dim=0), (lvl=2, dim=1)])
|
|
// dimensions 0 and 1 are batch dimensions.
|
|
//
|
|
// bt.sizes() returns (5, 7); bt.sum(0) performs a reduction over the (public)
|
|
// dim 0, which is equivalent to dim 3 in the underlying ones(2, 3, 5, 7)
|
|
// tensor.
|
|
struct TORCH_API BatchedTensorImpl : public c10::TensorImpl {
|
|
explicit BatchedTensorImpl(Tensor value, BatchDims bdims);
|
|
|
|
// Returns a reference to BatchDims that represent which dimensions of this
|
|
// tensor are private.
|
|
BatchDimsRef bdims() const {
|
|
return bdims_;
|
|
}
|
|
|
|
// BatchedTensorImpl wraps a Tensor
|
|
const Tensor& value() const {
|
|
return value_;
|
|
};
|
|
|
|
// Given a public dimension index, return the dimension index in the
|
|
// underlying value() tensor. For example, if we have
|
|
// bt = BatchedTensorImpl(ones(2, 3, 5, 7), [(lvl=1, dim=0), (lvl=2,
|
|
// dim=2)])
|
|
// bt.actualDim(0) -> 1
|
|
// bt.actualDim(1) -> 3
|
|
// bt.actualDim(2) -> Error
|
|
int64_t actualDim(int64_t dim, bool wrap_dim = true) const;
|
|
|
|
// We have to override this because we opted into CustomStrides
|
|
IntArrayRef strides_custom() const override;
|
|
// Override a bunch of methods inherited from TensorImpl to return error
|
|
// messages.
|
|
bool is_contiguous_custom(at::MemoryFormat memory_format) const override;
|
|
void set_size(int64_t dim, int64_t new_size) override;
|
|
void set_stride(int64_t dim, int64_t new_stride) override;
|
|
void set_storage_offset(int64_t storage_offset) override;
|
|
#ifdef DEBUG
|
|
bool has_storage() const override;
|
|
#endif
|
|
|
|
private:
|
|
// see NOTE: [BatchedTensorImpl levels invariant]
|
|
void checkInvariants() const;
|
|
const char* tensorimpl_type_name() const override;
|
|
|
|
Tensor value_;
|
|
|
|
// Note: [BatchedTensorImpl levels invariant]
|
|
// There is an invariant that the BatchDims must be stored in increasing
|
|
// `level` order. That is, for i < j, bdims_[i].level must be less than
|
|
// bdims_[j].level.
|
|
BatchDims bdims_;
|
|
};
|
|
|
|
// NB: We use the term "BatchedTensor" to mean a Tensor that is backed with a
|
|
// BatchedTensorImpl.
|
|
inline bool isBatchedTensor(const Tensor& tensor) {
|
|
return tensor.unsafeGetTensorImpl()->key_set().has(DispatchKey::Batched);
|
|
}
|
|
|
|
// It is unsafe to call this on a Tensor that is not backed by a
|
|
// BatchedTensorImpl. Please use `maybeGetBatchedImpl` whenever possible.
|
|
inline BatchedTensorImpl* unsafeGetBatchedImpl(const Tensor& tensor) {
|
|
return static_cast<BatchedTensorImpl*>(tensor.unsafeGetTensorImpl());
|
|
}
|
|
|
|
inline BatchedTensorImpl* maybeGetBatchedImpl(const Tensor& tensor) {
|
|
if (!isBatchedTensor(tensor)) {
|
|
return nullptr;
|
|
}
|
|
return unsafeGetBatchedImpl(tensor);
|
|
}
|
|
|
|
// Returns a bitset. If bit i is set, then that means dim i is a batchdim.
|
|
inline std::bitset<kVmapMaxTensorDims> createBatchDimBitset(
|
|
BatchDimsRef bdims) {
|
|
std::bitset<kVmapMaxTensorDims> is_bdim;
|
|
for (const auto& bdim : bdims) {
|
|
is_bdim.set(bdim.dim());
|
|
}
|
|
return is_bdim;
|
|
}
|
|
|
|
// Creates a bitset for all of the levels present in `bdims`
|
|
inline std::bitset<kVmapNumLevels> createVmapLevelsBitset(BatchDimsRef bdims) {
|
|
std::bitset<kVmapNumLevels> result;
|
|
for (const auto& bdim : bdims) {
|
|
result.set(bdim.level());
|
|
}
|
|
return result;
|
|
}
|
|
|
|
inline std::ostream& operator<<(std::ostream& out, const BatchDim& bdim) {
|
|
out << "(lvl=" << bdim.level() << ", dim=" << bdim.dim() << ")";
|
|
return out;
|
|
}
|
|
|
|
// Use this to construct a BatchedTensor from a regular Tensor
|
|
TORCH_API Tensor makeBatched(const Tensor& tensor, BatchDims bdims);
|
|
|
|
// Adds a batch dim to `tensor`, returning a BatchedTensor
|
|
TORCH_API Tensor addBatchDim(const Tensor& tensor, int64_t level, int64_t dim);
|
|
|
|
// Checks if an inplace operation on self and other is "vmap compatible".
|
|
// See NOTE: [vmap-incompatible in-place operations] for the definition of this.
|
|
TORCH_API bool inplaceIsVmapCompatible(const Tensor& self, const Tensor& other);
|
|
|
|
} // namespace at
|