ai-content-maker/.venv/Lib/site-packages/torch/include/ATen/LegacyBatchedTensorImpl.h

161 lines
5.4 KiB
C++

#pragma once
#include <bitset>
#include <ATen/ArrayRef.h>
#include <ATen/SmallVector.h>
#include <ATen/Tensor.h>
namespace at {
// We assume this in a few other places in the codebase,
// but there isn't a centralized definition.
constexpr int64_t kVmapMaxTensorDims = 64;
// The valid vmap levels range from [0, 64). This effectively means that we
// support a maximum of 64 nested vmaps.
constexpr int64_t kVmapNumLevels = 64;
// Store this number of elements of BatchDims on the stack. Most people will
// probably use <= 5 nested vmaps, but adjust this number as necessary.
constexpr int64_t kBatchDimsStackSize = 5;
// a BatchDim represents a "private" dimension on a Tensor created inside of
// vmap. It is a (level, dim) tuple, with the `dim` indicating which dimension
// is being vmap'ed over and the `level` being an identifier for which vmap
// said dimension was created inside. The `dim` corresponds to a "physical
// dim" - it is a dimension index on the underlying physical tensor that is
// being vmapped over.
struct BatchDim {
BatchDim(int64_t level, int64_t dim) : dim_(dim), level_(level) {}
int64_t dim() const {
return dim_;
}
int64_t level() const {
return level_;
}
private:
int64_t dim_;
int64_t level_;
};
using BatchDims = SmallVector<BatchDim, kBatchDimsStackSize>;
using BatchDimsRef = ArrayRef<BatchDim>;
// A BatchedTensorImpl holds an underlying Tensor and a list of BatchDim
// NB: We use the term "BatchedTensor" to mean a Tensor that is backed with a
// BatchedTensorImpl.
//
// The batch dimensions are treated as being "private"; they are not
// user-visible. For example, in the following Tensor,
// bt = BatchedTensorImpl(ones(2, 3, 5, 7), [(lvl=1, dim=0), (lvl=2, dim=1)])
// dimensions 0 and 1 are batch dimensions.
//
// bt.sizes() returns (5, 7); bt.sum(0) performs a reduction over the (public)
// dim 0, which is equivalent to dim 3 in the underlying ones(2, 3, 5, 7)
// tensor.
struct TORCH_API BatchedTensorImpl : public c10::TensorImpl {
explicit BatchedTensorImpl(Tensor value, BatchDims bdims);
// Returns a reference to BatchDims that represent which dimensions of this
// tensor are private.
BatchDimsRef bdims() const {
return bdims_;
}
// BatchedTensorImpl wraps a Tensor
const Tensor& value() const {
return value_;
};
// Given a public dimension index, return the dimension index in the
// underlying value() tensor. For example, if we have
// bt = BatchedTensorImpl(ones(2, 3, 5, 7), [(lvl=1, dim=0), (lvl=2,
// dim=2)])
// bt.actualDim(0) -> 1
// bt.actualDim(1) -> 3
// bt.actualDim(2) -> Error
int64_t actualDim(int64_t dim, bool wrap_dim = true) const;
// We have to override this because we opted into CustomStrides
IntArrayRef strides_custom() const override;
// Override a bunch of methods inherited from TensorImpl to return error
// messages.
bool is_contiguous_custom(at::MemoryFormat memory_format) const override;
void set_size(int64_t dim, int64_t new_size) override;
void set_stride(int64_t dim, int64_t new_stride) override;
void set_storage_offset(int64_t storage_offset) override;
#ifdef DEBUG
bool has_storage() const override;
#endif
private:
// see NOTE: [BatchedTensorImpl levels invariant]
void checkInvariants() const;
const char* tensorimpl_type_name() const override;
Tensor value_;
// Note: [BatchedTensorImpl levels invariant]
// There is an invariant that the BatchDims must be stored in increasing
// `level` order. That is, for i < j, bdims_[i].level must be less than
// bdims_[j].level.
BatchDims bdims_;
};
// NB: We use the term "BatchedTensor" to mean a Tensor that is backed with a
// BatchedTensorImpl.
inline bool isBatchedTensor(const Tensor& tensor) {
return tensor.unsafeGetTensorImpl()->key_set().has(DispatchKey::Batched);
}
// It is unsafe to call this on a Tensor that is not backed by a
// BatchedTensorImpl. Please use `maybeGetBatchedImpl` whenever possible.
inline BatchedTensorImpl* unsafeGetBatchedImpl(const Tensor& tensor) {
return static_cast<BatchedTensorImpl*>(tensor.unsafeGetTensorImpl());
}
inline BatchedTensorImpl* maybeGetBatchedImpl(const Tensor& tensor) {
if (!isBatchedTensor(tensor)) {
return nullptr;
}
return unsafeGetBatchedImpl(tensor);
}
// Returns a bitset. If bit i is set, then that means dim i is a batchdim.
inline std::bitset<kVmapMaxTensorDims> createBatchDimBitset(
BatchDimsRef bdims) {
std::bitset<kVmapMaxTensorDims> is_bdim;
for (const auto& bdim : bdims) {
is_bdim.set(bdim.dim());
}
return is_bdim;
}
// Creates a bitset for all of the levels present in `bdims`
inline std::bitset<kVmapNumLevels> createVmapLevelsBitset(BatchDimsRef bdims) {
std::bitset<kVmapNumLevels> result;
for (const auto& bdim : bdims) {
result.set(bdim.level());
}
return result;
}
inline std::ostream& operator<<(std::ostream& out, const BatchDim& bdim) {
out << "(lvl=" << bdim.level() << ", dim=" << bdim.dim() << ")";
return out;
}
// Use this to construct a BatchedTensor from a regular Tensor
TORCH_API Tensor makeBatched(const Tensor& tensor, BatchDims bdims);
// Adds a batch dim to `tensor`, returning a BatchedTensor
TORCH_API Tensor addBatchDim(const Tensor& tensor, int64_t level, int64_t dim);
// Checks if an inplace operation on self and other is "vmap compatible".
// See NOTE: [vmap-incompatible in-place operations] for the definition of this.
TORCH_API bool inplaceIsVmapCompatible(const Tensor& self, const Tensor& other);
} // namespace at