ai-content-maker/.venv/Lib/site-packages/torch/include/ATen/ScalarOps.h

54 lines
1.6 KiB
C++

#pragma once
#include <ATen/Tensor.h>
#include <c10/core/Scalar.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#else
#include <ATen/ops/scalar_tensor.h>
#endif
namespace at::detail {
// When filling a number to 1-element CPU tensor, we want to skip
// everything but manipulate data ptr directly.
// Ideally this fast pass should be implemented in TensorIterator,
// but we also want to skip compute_types which in not avoidable
// in TensorIterator for now.
Tensor& scalar_fill(Tensor& self, const Scalar& value);
TORCH_API Tensor scalar_tensor_static(
const Scalar& s,
c10::optional<ScalarType> dtype_opt,
c10::optional<Device> device_opt);
} // namespace at::detail
// This is in the c10 namespace because we use ADL to find the functions in it.
namespace c10 {
// FIXME: this should be (and was) Scalar::toTensor, but there is currently no
// way to implement this without going through Derived Types (which are not part
// of core).
inline at::Tensor scalar_to_tensor(
const Scalar& s,
const Device device = at::kCPU) {
// This is the fast track we have for CPU scalar tensors.
if (device == at::kCPU) {
return at::detail::scalar_tensor_static(s, s.type(), at::kCPU);
}
return at::scalar_tensor(s, at::device(device).dtype(s.type()));
}
} // namespace c10
namespace at::native {
inline Tensor wrapped_scalar_tensor(
const Scalar& scalar,
const Device device = at::kCPU) {
auto tensor = scalar_to_tensor(scalar, device);
tensor.unsafeGetTensorImpl()->set_wrapped_number(true);
return tensor;
}
} // namespace at::native