ai-content-maker/.venv/Lib/site-packages/torch/include/ATen/detail/CUDAHooksInterface.h

202 lines
6.8 KiB
C++

#pragma once
#include <c10/core/Allocator.h>
#include <c10/util/Exception.h>
#include <c10/util/Registry.h>
#include <ATen/detail/AcceleratorHooksInterface.h>
// Forward-declares at::Generator and at::cuda::NVRTC
namespace at {
struct Generator;
namespace cuda {
struct NVRTC;
} // namespace cuda
} // namespace at
// NB: Class must live in `at` due to limitations of Registry.h.
namespace at {
#ifdef _MSC_VER
constexpr const char* CUDA_HELP =
"PyTorch splits its backend into two shared libraries: a CPU library "
"and a CUDA library; this error has occurred because you are trying "
"to use some CUDA functionality, but the CUDA library has not been "
"loaded by the dynamic linker for some reason. The CUDA library MUST "
"be loaded, EVEN IF you don't directly use any symbols from the CUDA library! "
"One common culprit is a lack of -INCLUDE:?warp_size@cuda@at@@YAHXZ "
"in your link arguments; many dynamic linkers will delete dynamic library "
"dependencies if you don't depend on any of their symbols. You can check "
"if this has occurred by using link on your binary to see if there is a "
"dependency on *_cuda.dll library.";
#else
constexpr const char* CUDA_HELP =
"PyTorch splits its backend into two shared libraries: a CPU library "
"and a CUDA library; this error has occurred because you are trying "
"to use some CUDA functionality, but the CUDA library has not been "
"loaded by the dynamic linker for some reason. The CUDA library MUST "
"be loaded, EVEN IF you don't directly use any symbols from the CUDA library! "
"One common culprit is a lack of -Wl,--no-as-needed in your link arguments; many "
"dynamic linkers will delete dynamic library dependencies if you don't "
"depend on any of their symbols. You can check if this has occurred by "
"using ldd on your binary to see if there is a dependency on *_cuda.so "
"library.";
#endif
// The CUDAHooksInterface is an omnibus interface for any CUDA functionality
// which we may want to call into from CPU code (and thus must be dynamically
// dispatched, to allow for separate compilation of CUDA code). How do I
// decide if a function should live in this class? There are two tests:
//
// 1. Does the *implementation* of this function require linking against
// CUDA libraries?
//
// 2. Is this function *called* from non-CUDA ATen code?
//
// (2) should filter out many ostensible use-cases, since many times a CUDA
// function provided by ATen is only really ever used by actual CUDA code.
//
// TODO: Consider putting the stub definitions in another class, so that one
// never forgets to implement each virtual function in the real implementation
// in CUDAHooks. This probably doesn't buy us much though.
struct TORCH_API CUDAHooksInterface : AcceleratorHooksInterface {
// This should never actually be implemented, but it is used to
// squelch -Werror=non-virtual-dtor
virtual ~CUDAHooksInterface() override = default;
// Initialize THCState and, transitively, the CUDA state
virtual void initCUDA() const {
TORCH_CHECK(false, "Cannot initialize CUDA without ATen_cuda library. ", CUDA_HELP);
}
virtual const Generator& getDefaultCUDAGenerator(C10_UNUSED DeviceIndex device_index = -1) const {
TORCH_CHECK(false, "Cannot get default CUDA generator without ATen_cuda library. ", CUDA_HELP);
}
virtual Device getDeviceFromPtr(void* /*data*/) const {
TORCH_CHECK(false, "Cannot get device of pointer on CUDA without ATen_cuda library. ", CUDA_HELP);
}
virtual bool isPinnedPtr(const void* /*data*/) const {
return false;
}
virtual bool hasCUDA() const {
return false;
}
virtual bool hasCUDART() const {
return false;
}
virtual bool hasMAGMA() const {
return false;
}
virtual bool hasCuDNN() const {
return false;
}
virtual bool hasCuSOLVER() const {
return false;
}
virtual bool hasROCM() const {
return false;
}
virtual const at::cuda::NVRTC& nvrtc() const {
TORCH_CHECK(false, "NVRTC requires CUDA. ", CUDA_HELP);
}
virtual bool hasPrimaryContext(DeviceIndex device_index) const override {
TORCH_CHECK(false, "Cannot call hasPrimaryContext(", device_index, ") without ATen_cuda library. ", CUDA_HELP);
}
virtual DeviceIndex current_device() const {
return -1;
}
virtual Allocator* getPinnedMemoryAllocator() const {
TORCH_CHECK(false, "Pinned memory requires CUDA. ", CUDA_HELP);
}
virtual Allocator* getCUDADeviceAllocator() const {
TORCH_CHECK(false, "CUDADeviceAllocator requires CUDA. ", CUDA_HELP);
}
virtual bool compiledWithCuDNN() const {
return false;
}
virtual bool compiledWithMIOpen() const {
return false;
}
virtual bool supportsDilatedConvolutionWithCuDNN() const {
return false;
}
virtual bool supportsDepthwiseConvolutionWithCuDNN() const {
return false;
}
virtual bool supportsBFloat16ConvolutionWithCuDNNv8() const {
return false;
}
virtual long versionCuDNN() const {
TORCH_CHECK(false, "Cannot query cuDNN version without ATen_cuda library. ", CUDA_HELP);
}
virtual long versionCUDART() const {
TORCH_CHECK(false, "Cannot query CUDART version without ATen_cuda library. ", CUDA_HELP);
}
virtual std::string showConfig() const {
TORCH_CHECK(false, "Cannot query detailed CUDA version without ATen_cuda library. ", CUDA_HELP);
}
virtual double batchnormMinEpsilonCuDNN() const {
TORCH_CHECK(false,
"Cannot query batchnormMinEpsilonCuDNN() without ATen_cuda library. ", CUDA_HELP);
}
virtual int64_t cuFFTGetPlanCacheMaxSize(DeviceIndex /*device_index*/) const {
TORCH_CHECK(false, "Cannot access cuFFT plan cache without ATen_cuda library. ", CUDA_HELP);
}
virtual void cuFFTSetPlanCacheMaxSize(DeviceIndex /*device_index*/, int64_t /*max_size*/) const {
TORCH_CHECK(false, "Cannot access cuFFT plan cache without ATen_cuda library. ", CUDA_HELP);
}
virtual int64_t cuFFTGetPlanCacheSize(DeviceIndex /*device_index*/) const {
TORCH_CHECK(false, "Cannot access cuFFT plan cache without ATen_cuda library. ", CUDA_HELP);
}
virtual void cuFFTClearPlanCache(DeviceIndex /*device_index*/) const {
TORCH_CHECK(false, "Cannot access cuFFT plan cache without ATen_cuda library. ", CUDA_HELP);
}
virtual int getNumGPUs() const {
return 0;
}
virtual void deviceSynchronize(DeviceIndex /*device_index*/) const {
TORCH_CHECK(false, "Cannot synchronize CUDA device without ATen_cuda library. ", CUDA_HELP);
}
};
// NB: dummy argument to suppress "ISO C++11 requires at least one argument
// for the "..." in a variadic macro"
struct TORCH_API CUDAHooksArgs {};
TORCH_DECLARE_REGISTRY(CUDAHooksRegistry, CUDAHooksInterface, CUDAHooksArgs);
#define REGISTER_CUDA_HOOKS(clsname) \
C10_REGISTER_CLASS(CUDAHooksRegistry, clsname, clsname)
namespace detail {
TORCH_API const CUDAHooksInterface& getCUDAHooks();
} // namespace detail
} // namespace at