174 lines
7.6 KiB
C++
174 lines
7.6 KiB
C++
#pragma once
|
|
|
|
#include <ATen/core/Tensor.h>
|
|
#include <ATen/native/TypeProperties.h>
|
|
#include <ATen/ScalarOps.h>
|
|
|
|
#ifndef AT_PER_OPERATOR_HEADERS
|
|
#include <ATen/NativeFunctions.h>
|
|
#else
|
|
#include <ATen/ops/result_type.h>
|
|
#endif
|
|
|
|
namespace at::native {
|
|
|
|
// original values given by raw_*. If an original value is not contiguous, will make a contiguous copy to
|
|
// the corresponding trimmed_* value. Additionally, if the dtypes of the boundary and input tensor do not
|
|
// match, will change them to be a common super type so comparisons are done between the same types.
|
|
// For any trimmed_* tensor, if its outgoing value matches what it was incoming (typically null), then the
|
|
// corresponding raw_* version should be used since it was already contiguous of the right type.
|
|
inline void searchsorted_maybe_trim_input_tensors(
|
|
Tensor& trimmed_input,
|
|
Tensor& trimmed_boundaries,
|
|
Tensor& trimmed_sorter,
|
|
const Tensor& raw_input,
|
|
const Tensor& raw_boundaries,
|
|
const Tensor& raw_sorter) {
|
|
bool in_is_contiguous = raw_input.is_contiguous();
|
|
bool bd_is_contiguous = raw_boundaries.is_contiguous();
|
|
bool sort_is_contiguous = raw_sorter.is_contiguous();
|
|
|
|
if (!in_is_contiguous) {
|
|
TORCH_WARN_ONCE("torch.searchsorted(): input value tensor is non-contiguous, this will lower the performance due "
|
|
"to extra data copy when converting non-contiguous tensor to contiguous, please use contiguous input value "
|
|
"tensor if possible. This message will only appear once per program.");
|
|
trimmed_input = raw_input.contiguous();
|
|
}
|
|
if (!bd_is_contiguous) {
|
|
TORCH_WARN_ONCE("torch.searchsorted(): boundary tensor is non-contiguous, this will lower the performance due "
|
|
"to extra data copy when converting non-contiguous tensor to contiguous, please use contiguous boundary "
|
|
"tensor if possible. This message will only appear once per program.");
|
|
trimmed_boundaries = raw_boundaries.contiguous();
|
|
}
|
|
if (!sort_is_contiguous) {
|
|
TORCH_WARN_ONCE("torch.searchsorted(): sorter tensor is non-contiguous, this will lower the performance due "
|
|
"to extra data copy when converting non-contiguous tensor to contiguous, please use contiguous sorter "
|
|
"tensor if possible. This message will only appear once per program.");
|
|
trimmed_sorter = raw_sorter.contiguous();
|
|
}
|
|
if (raw_input.dtype() != raw_boundaries.dtype()) {
|
|
at::native::ResultTypeState state = {};
|
|
state = at::native::update_result_type_state(raw_boundaries, state);
|
|
state = at::native::update_result_type_state(raw_input, state);
|
|
ScalarType common_stype = at::native::result_type(state);
|
|
|
|
TORCH_INTERNAL_ASSERT(common_stype != ScalarType::Undefined);
|
|
if (common_stype != raw_input.scalar_type()) {
|
|
trimmed_input = in_is_contiguous ? raw_input.to(common_stype) : trimmed_input.to(common_stype);
|
|
}
|
|
if (common_stype != raw_boundaries.scalar_type()) {
|
|
trimmed_boundaries = bd_is_contiguous ? raw_boundaries.to(common_stype) : trimmed_boundaries.to(common_stype);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* unused but needed for internal jagged tensor class */
|
|
inline void searchsorted_maybe_trim_input_tensors(
|
|
Tensor& trimmed_input,
|
|
Tensor& trimmed_boundaries,
|
|
const Tensor& raw_input,
|
|
const Tensor& raw_boundaries) {
|
|
Tensor trimmed_sorter;
|
|
Tensor raw_sorter;
|
|
return searchsorted_maybe_trim_input_tensors(
|
|
trimmed_input,
|
|
trimmed_boundaries,
|
|
trimmed_sorter,
|
|
raw_input,
|
|
raw_boundaries,
|
|
raw_sorter);
|
|
}
|
|
|
|
inline bool searchsorted_dims_matched_before_last_dim(const Tensor& boundaries, const Tensor& input) {
|
|
if (boundaries.dim() != input.dim()) {
|
|
return false;
|
|
}
|
|
const auto& dims_bd = boundaries.sizes();
|
|
const auto& dims_in = input.sizes();
|
|
for (int64_t dim = 0; dim + 1 < boundaries.dim(); ++dim) {
|
|
if (dims_bd[dim] != dims_in[dim]) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
inline Tensor searchsorted_scalar_tensor(const Scalar& scalar, const c10::Device& device) {
|
|
auto tensor = c10::scalar_to_tensor(scalar, device);
|
|
// This is to adopt the scalar promotion rules defined in native/TypeProperties.h
|
|
// So we have the same type promotion rules as binary operations.
|
|
tensor.unsafeGetTensorImpl()->set_wrapped_number(true);
|
|
return tensor;
|
|
}
|
|
|
|
inline void searchsorted_pre_check(
|
|
const Tensor& boundaries,
|
|
const Tensor& input,
|
|
const Tensor& output,
|
|
const bool out_int32,
|
|
const bool right,
|
|
const c10::optional<c10::string_view> side_opt,
|
|
const Tensor& sorter) {
|
|
if (side_opt) {
|
|
const c10::string_view side = *side_opt;
|
|
TORCH_CHECK(side == "left" || side == "right", "torch.searchsorted(): side can only be 'left' or 'right' but ",
|
|
"got ", side);
|
|
|
|
// assume the user has not explicitly set (right=False, side="right")
|
|
TORCH_CHECK(!right || side == "right", "torch.searchsorted(): side and right can't be set to opposites, got side "
|
|
"of ", side, " while right was True");
|
|
}
|
|
|
|
TORCH_CHECK(boundaries.device() == input.device(), "torch.searchsorted(): boundaries and input value tensors ",
|
|
"should have same device type, but got boundaries tensor device type ", boundaries.device(), " and input value ",
|
|
"tensor device type ", input.device());
|
|
|
|
if (sorter.defined()) {
|
|
TORCH_CHECK(sorter.device() == boundaries.device(), "torch.searchsorted(): sorter and boundary tensors should ",
|
|
"have same device type, but got sorter tensor device type ", sorter.device(), " and input value tensor ",
|
|
"device type ", boundaries.device());
|
|
|
|
TORCH_CHECK(sorter.sizes() == boundaries.sizes(), "torch.searchsorted(): boundary and sorter must have the same "
|
|
"size, but got boundary tensor ", boundaries.sizes(), "and got sorter tensor ", sorter.sizes());
|
|
|
|
TORCH_CHECK(sorter.scalar_type() == ScalarType::Long, "torch.searchsorted(): sorter must be a tensor of long ",
|
|
"dtype but got dtype ", sorter.scalar_type());
|
|
|
|
if (sorter.numel() > 0) {
|
|
auto minmax = sorter.aminmax();
|
|
int64_t vmin = std::get<0>(minmax).item().toLong();
|
|
int64_t vmax = std::get<1>(minmax).item().toLong();
|
|
TORCH_CHECK(vmin >= 0 && vmax < sorter.sizes().back(), "torch.searchsorted(): sorter index out of range");
|
|
}
|
|
}
|
|
|
|
TORCH_CHECK(input.dim() > 0 || (input.dim() == 0 && input.numel() == 1 && boundaries.dim() == 1),
|
|
"torch.searchsorted(): input value can be a scalar only when boundaries tensor dimension is 1, but we got ",
|
|
"boundaries tensor dim(", boundaries.dim(), ") and input value's dim(", input.dim(), ") numel(",
|
|
input.numel(), ")");
|
|
|
|
TORCH_CHECK(boundaries.dim() != 0, "torch.searchsorted(): boundaries tensor should have positive dimension, but ",
|
|
"got 0 dimension");
|
|
|
|
TORCH_CHECK(boundaries.dim() == 1 || searchsorted_dims_matched_before_last_dim(boundaries, input),
|
|
"torch.searchsorted(): boundaries tensor should be 1 dimension or the first N-1 dimensions of boundaries tensor ",
|
|
"and input value tensor must match, but we got boundaries tensor ", boundaries.sizes(), " and input value tensor ",
|
|
input.sizes());
|
|
|
|
ScalarType output_dtype = output.scalar_type();
|
|
TORCH_CHECK(
|
|
(output_dtype == ScalarType::Long && !out_int32) ||
|
|
(output_dtype == ScalarType::Int && out_int32),
|
|
"torch.searchsorted(): output tensor's dtype is wrong, it can only be Int(int32) or Long(int64) depending on ",
|
|
"whether out_int32 flag is True, but we got output tensor's dtype ", output_dtype,
|
|
" and out_int32 flag is ", (out_int32 ? "True" : "False"));
|
|
|
|
if (out_int32) {
|
|
TORCH_CHECK(boundaries.sizes().back() < INT_MAX,
|
|
"torch.searchsorted(): the size of boundaries' last dimension should be less than ", INT_MAX, ", but we got ",
|
|
boundaries.sizes().back());
|
|
}
|
|
}
|
|
|
|
} // namespace at::native
|