ai-content-maker/.venv/Lib/site-packages/torch/include/ATen/native/ConvUtils.h

447 lines
19 KiB
C++

#pragma once
#include <ATen/core/Tensor.h>
#include <ATen/TensorUtils.h>
#include <ATen/detail/CUDAHooksInterface.h>
#include <ATen/native/DispatchStub.h>
#include <c10/util/env.h>
#include <c10/util/irange.h>
namespace at::native {
using conv_depthwise2d_backward_fn = std::tuple<at::Tensor,at::Tensor>(*)(
const at::Tensor&, const at::Tensor&, const at::Tensor&, at::IntArrayRef, at::IntArrayRef,
at::IntArrayRef, at::IntArrayRef, std::array<bool, 2>);
DECLARE_DISPATCH(conv_depthwise2d_backward_fn, conv_depthwise2d_backward_stub);
using conv_depthwise3d_backward_fn = std::tuple<at::Tensor,at::Tensor,at::Tensor>(*)(
const at::Tensor&, const at::Tensor&, const at::Tensor&, at::IntArrayRef, at::IntArrayRef,
at::IntArrayRef, at::IntArrayRef, std::array<bool, 3>);
DECLARE_DISPATCH(conv_depthwise3d_backward_fn, conv_depthwise3d_backward_stub);
using cudnn_convolution_backward_fn = std::tuple<at::Tensor,at::Tensor>(*)(
const at::Tensor&, const at::Tensor&, const at::Tensor&, at::IntArrayRef, at::IntArrayRef,
at::IntArrayRef, int64_t, bool, bool, bool, std::array<bool,2>);
DECLARE_DISPATCH(cudnn_convolution_backward_fn, cudnn_convolution_backward_stub);
using mps_convolution_backward_fn = std::tuple<at::Tensor,at::Tensor,at::Tensor>(*)(
const at::Tensor&, const at::Tensor&, const at::Tensor&, at::IntArrayRef, at::IntArrayRef,
at::IntArrayRef, int64_t, std::array<bool,3>);
DECLARE_DISPATCH(mps_convolution_backward_fn, mps_convolution_backward_stub);
using cudnn_convolution_transpose_backward_fn = std::tuple<at::Tensor,at::Tensor>(*)(
const at::Tensor&, const at::Tensor&, const at::Tensor&, at::IntArrayRef, at::IntArrayRef,
at::IntArrayRef, at::IntArrayRef, int64_t, bool, bool, bool, std::array<bool,2>);
DECLARE_DISPATCH(cudnn_convolution_transpose_backward_fn, cudnn_convolution_transpose_backward_stub);
using miopen_convolution_backward_fn = std::tuple<at::Tensor,at::Tensor,at::Tensor>(*)(
const at::Tensor&, const at::Tensor&, const at::Tensor&, at::IntArrayRef, at::IntArrayRef,
at::IntArrayRef, int64_t, bool, bool, std::array<bool,3>);
DECLARE_DISPATCH(miopen_convolution_backward_fn, miopen_convolution_backward_stub);
using miopen_convolution_transpose_backward_fn = std::tuple<at::Tensor,at::Tensor,at::Tensor>(*)(
const at::Tensor&, const at::Tensor&, const at::Tensor&, at::IntArrayRef, at::IntArrayRef,
at::IntArrayRef, at::IntArrayRef, int64_t, bool, bool, std::array<bool,3>);
DECLARE_DISPATCH(miopen_convolution_transpose_backward_fn, miopen_convolution_transpose_backward_stub);
using miopen_depthwise_convolution_backward_fn = std::tuple<at::Tensor,at::Tensor,at::Tensor>(*)(
const at::Tensor&, const at::Tensor&, const at::Tensor&, at::IntArrayRef, at::IntArrayRef,
at::IntArrayRef, int64_t, bool, bool, std::array<bool,3>);
DECLARE_DISPATCH(miopen_depthwise_convolution_backward_fn, miopen_depthwise_convolution_backward_stub);
using mkldnn_convolution_backward_fn = std::tuple<at::Tensor,at::Tensor,at::Tensor>(*)(
const at::Tensor&, const at::Tensor&, const at::Tensor&, at::IntArrayRef, at::IntArrayRef,
at::IntArrayRef, int64_t, std::array<bool,3>);
DECLARE_DISPATCH(mkldnn_convolution_backward_fn, mkldnn_convolution_backward_stub);
using mkldnn_convolution_transpose_fn = Tensor(*)(const Tensor&, const Tensor&, const c10::optional<Tensor>&,
IntArrayRef, IntArrayRef, IntArrayRef, IntArrayRef, int64_t);
DECLARE_DISPATCH(mkldnn_convolution_transpose_fn, mkldnn_convolution_transpose_stub);
using mkldnn_convolution_transpose_backward_fn = std::tuple<at::Tensor,at::Tensor,at::Tensor>(*)(
const at::Tensor&, const at::Tensor&, const at::Tensor&, at::IntArrayRef, at::IntArrayRef,
at::IntArrayRef, at::IntArrayRef, int64_t, std::array<bool,3>);
DECLARE_DISPATCH(mkldnn_convolution_transpose_backward_fn, mkldnn_convolution_transpose_backward_stub);
using slow_conv_dilated2d_backward_fn = std::tuple<at::Tensor,at::Tensor,at::Tensor>(*)(
const at::Tensor&, const at::Tensor&, const at::Tensor&, at::IntArrayRef, at::IntArrayRef,
at::IntArrayRef, at::IntArrayRef, std::array<bool, 3>);
DECLARE_DISPATCH(slow_conv_dilated2d_backward_fn, slow_conv_dilated2d_backward_stub);
using slow_conv_dilated3d_backward_fn = std::tuple<at::Tensor,at::Tensor,at::Tensor>(*)(
const at::Tensor&, const at::Tensor&, const at::Tensor&, at::IntArrayRef, at::IntArrayRef,
at::IntArrayRef, at::IntArrayRef, std::array<bool, 3>);
DECLARE_DISPATCH(slow_conv_dilated3d_backward_fn, slow_conv_dilated3d_backward_stub);
using slow_conv_transpose2d_backward_fn = std::tuple<at::Tensor,at::Tensor,at::Tensor>(*)(
const at::Tensor&, const at::Tensor&, const at::Tensor&, at::IntArrayRef, at::IntArrayRef,
at::IntArrayRef, at::IntArrayRef, at::IntArrayRef, std::array<bool,3>);
DECLARE_DISPATCH(slow_conv_transpose2d_backward_fn, slow_conv_transpose2d_backward_stub);
using slow_conv_transpose3d_backward_fn = std::tuple<at::Tensor,at::Tensor,at::Tensor>(*)(
const at::Tensor&, const at::Tensor&, const at::Tensor&, at::IntArrayRef, at::IntArrayRef,
at::IntArrayRef, at::IntArrayRef, at::IntArrayRef, std::array<bool,3>);
DECLARE_DISPATCH(slow_conv_transpose3d_backward_fn, slow_conv_transpose3d_backward_stub);
namespace {
static bool cudnnv8_heuristic_mode_b = c10::utils::check_env("TORCH_CUDNN_USE_HEURISTIC_MODE_B") == true;
}
static inline bool cudnnv8_enabled_check_debug() {
static bool cudnnv8_flag = c10::utils::check_env("TORCH_CUDNN_V8_API_DISABLED") != true;
static bool cudnnv8_debug = c10::utils::check_env("TORCH_CUDNN_V8_API_DEBUG") == true;
static uint8_t cudnnv8_debugcount = 0;
if (cudnnv8_debug == 1 && cudnnv8_debugcount < 10) {
TORCH_WARN("TORCH_CUDNN_V8_DEBUG ON, V8 ON: ", cudnnv8_flag, " TORCH_CUDNN_USE_HEURISTIC_MODE B: ", cudnnv8_heuristic_mode_b);
cudnnv8_debugcount++;
}
return cudnnv8_flag == 1;
}
static inline bool cudnnv8_use_heur_mode_b() {
return cudnnv8_heuristic_mode_b;
}
// Keep in sync with py::enum_ in Module.cpp
enum class ConvBackend {
CudaDepthwise2d,
CudaDepthwise3d,
Cudnn,
CudnnTranspose,
Empty,
Miopen,
MiopenDepthwise,
MiopenTranspose,
Mkldnn,
MkldnnTranspose,
MkldnnEmpty,
NnpackSpatial,
Overrideable,
Slow2d,
Slow3d,
SlowDilated2d,
SlowDilated3d,
SlowTranspose2d,
SlowTranspose3d,
Winograd3x3Depthwise,
Xnnpack2d,
Mps,
MpsTranspose,
};
// Overload for selecting the convolution backend from the full set of convolution inputs.
// This overload is exposed to python for testing, etc.
TORCH_API ConvBackend select_conv_backend(
const Tensor& input, const Tensor& weight, const c10::optional<Tensor>& bias_opt,
SymIntArrayRef stride, SymIntArrayRef padding, SymIntArrayRef dilation,
bool transposed, SymIntArrayRef output_padding, c10::SymInt groups, const at::OptionalSymIntArrayRef bias_sizes_opt);
TORCH_API at::MemoryFormat _determine_backend_memory_format(const Tensor& input,
const Tensor& weight,
const ConvBackend backend);
// ---------------------------------------------------------------------
//
// Math
//
// ---------------------------------------------------------------------
constexpr int input_batch_size_dim = 0; // also grad_input
constexpr int input_channels_dim = 1;
constexpr int output_batch_size_dim = 0; // also grad_output
constexpr int output_channels_dim = 1;
constexpr int weight_output_channels_dim = 0;
constexpr int weight_input_channels_dim = 1;
// Often written as 2 + max_dim (extra dims for batch size and channels)
constexpr int max_dim = 3;
// ---------------------------------------------------------------------
//
// Checking
//
// ---------------------------------------------------------------------
// Used on pad, stride and dilation
static void check_args(CheckedFrom c, IntArrayRef args, size_t expected_size, const char* arg_name)
{
TORCH_CHECK(args.size() <= expected_size,
"Too many ", arg_name, " values (", args.size(), ") supplied, expecting ",
expected_size, " (while checking arguments for ", c, ")");
TORCH_CHECK(args.size() >= expected_size,
"Not enough ", arg_name, " values (", args.size(), ") supplied, expecting ",
expected_size, " (while checking arguments for ", c, ")");
auto num_negative_values = std::count_if(args.begin(), args.end(), [](int x){return x < 0;});
if (num_negative_values > 0){
std::stringstream ss;
ss << arg_name << " should be greater than zero but got (";
std::copy(args.begin(), args.end() - 1, std::ostream_iterator<int>(ss,", "));
ss << args.back() << ")" << " (while checking arguments for " << c << ")";
AT_ERROR(ss.str());
}
}
// NOTE [ Convolution checks ]
//
// NB: For many call sites, it is not strictly necessary to check all of
// these relationships (for example, for forward convolution, we compute
// the size of output ourselves, so we don't actually need to check
// output. However, writing a single function that does everything
// means we get to reuse it for both forwards and all backwards
// variants, even when the set of "real" inputs varies. The magic of
// relational computing!
//
// (There is one downside, which is that it is slightly harder to write
// error messages which are able to distinguish between real inputs
// (which the user can change) and computed inputs (which the user can
// only indirectly affect). It would be an interesting exercise to
// come up with a general framework to handle such situations.)
static void convolution_shape_check(
CheckedFrom c,
const TensorGeometryArg& input, const TensorGeometryArg& weight, const TensorGeometryArg& output,
IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups)
{
check_args(c, padding, input->dim() - 2, "padding");
check_args(c, stride, padding.size(), "stride");
check_args(c, dilation, padding.size(), "dilation");
// Input
checkDimRange(c, input, 3, 6 /* exclusive */);
checkSize_symint(c, input, input_channels_dim, weight->size(1) * groups);
// Weight
checkSameDim(c, input, weight);
// TODO: check that output->size() matches output_sizes
// TODO: check that weight matches output->sizes()
checkSameDim(c, input, output);
}
// NB: conv_output_size and conv_input_size are not bijections,
// as conv_output_size loses information; this is why conv_input_size
// takes an extra output_padding argument to resolve the ambiguity.
template <typename T>
static inline std::vector<T> _conv_output_size(
ArrayRef<T> input_size, ArrayRef<T> weight_size,
ArrayRef<T> padding, ArrayRef<T> stride, ArrayRef<T> dilation = ArrayRef<T>()
) {
// ASSERT(input_size.size() > 2)
// ASSERT(input_size.size() == weight_size.size())
bool has_dilation = !dilation.empty();
auto dim = input_size.size();
std::vector<T> output_size(dim);
output_size[0] = input_size[input_batch_size_dim];
output_size[1] = weight_size[weight_output_channels_dim];
for (const auto d : c10::irange(2, dim)) {
auto dilation_ = has_dilation ? dilation[d - 2] : 1;
auto kernel = dilation_ * (weight_size[d] - 1) + 1;
output_size[d] = (input_size[d] + (2 * padding[d - 2]) - kernel) / stride[d - 2] + 1;
}
return output_size;
}
static inline std::vector<int64_t> conv_output_size(
IntArrayRef input_size, IntArrayRef weight_size,
IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation = IntArrayRef()
) {
return _conv_output_size(input_size, weight_size, padding, stride, dilation);
}
static inline std::vector<c10::SymInt> conv_output_size(
SymIntArrayRef input_size, SymIntArrayRef weight_size,
SymIntArrayRef padding, SymIntArrayRef stride, SymIntArrayRef dilation = SymIntArrayRef()
) {
return _conv_output_size(input_size, weight_size, padding, stride, dilation);
}
template <typename T>
std::vector<T> _conv_input_size(
ArrayRef<T> output_size, ArrayRef<T> weight_size,
ArrayRef<T> padding, ArrayRef<T> output_padding, ArrayRef<T> stride, ArrayRef<T> dilation, T groups
) {
// ASSERT(output_size.size() > 2)
// ASSERT(output_size.size() == weight_size.size())
auto dim = output_size.size();
std::vector<T> input_size(dim);
input_size[0] = output_size[output_batch_size_dim];
input_size[1] = weight_size[weight_input_channels_dim] * groups;
for (const auto d : c10::irange(2, dim)) {
auto kernel = (weight_size[d] - 1) * dilation[d - 2] + 1;
input_size[d] = (output_size[d] - 1) * stride[d - 2] - (padding[d - 2] * 2) +
kernel + output_padding[d - 2];
}
return input_size;
}
static inline std::vector<c10::SymInt> conv_input_size(
SymIntArrayRef output_size, SymIntArrayRef weight_size,
SymIntArrayRef padding, SymIntArrayRef output_padding, SymIntArrayRef stride, SymIntArrayRef dilation, c10::SymInt groups
) {
return _conv_input_size(output_size, weight_size, padding, output_padding, stride, dilation, groups);
}
static inline std::vector<int64_t> conv_input_size(
IntArrayRef output_size, IntArrayRef weight_size,
IntArrayRef padding, IntArrayRef output_padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups
) {
return _conv_input_size(output_size, weight_size, padding, output_padding, stride, dilation, groups);
}
template <typename T>
std::vector<T> _conv_weight_size(
ArrayRef<T> input_size, ArrayRef<T> output_size,
ArrayRef<T> padding, ArrayRef<T> output_padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups
) {
auto dim = input_size.size();
std::vector<T> weight_size(dim);
weight_size[0] = output_size[1];
weight_size[1] = input_size[1] / groups;
for (const auto d : c10::irange(2, dim)) {
auto kernel = input_size[d] - (output_size[d] - 1) * stride[d - 2]
+ padding[d - 2] * 2 - output_padding[d - 2];
weight_size[d] = (kernel - 1) / dilation[d - 2] + 1;
}
return weight_size;
}
static inline std::vector<c10::SymInt> conv_weight_size(
SymIntArrayRef input_size, SymIntArrayRef output_size,
SymIntArrayRef padding, SymIntArrayRef output_padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups
) {
return _conv_weight_size(input_size, output_size, padding, output_padding, stride, dilation, groups);
}
static inline std::vector<int64_t> conv_weight_size(
IntArrayRef input_size, IntArrayRef output_size,
IntArrayRef padding, IntArrayRef output_padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups
) {
return _conv_weight_size(input_size, output_size, padding, output_padding, stride, dilation, groups);
}
static inline Tensor reshape_bias(int64_t dim, const Tensor& bias) {
std::vector<int64_t> shape(dim, 1);
shape[1] = -1;
return bias.reshape(shape);
}
static inline at::MemoryFormat cudnn_conv_suggest_memory_format(const at::Tensor& input, const at::Tensor& weight) {
// disable NHWC for float64 input.
if (!at::detail::getCUDAHooks().compiledWithCuDNN() ||
input.scalar_type() == at::kDouble ||
weight.scalar_type() == at::kDouble) {
return at::MemoryFormat::Contiguous;
}
long cudnn_version = at::detail::getCUDAHooks().versionCuDNN();
auto input_memory_format = input.suggest_memory_format();
auto weight_memory_format = weight.suggest_memory_format();
auto weight_ndim = weight.ndimension();
bool can_use_cudnn_channels_last_2d = (cudnn_version >= 7603) && (weight_ndim == 4) && (
(input_memory_format == at::MemoryFormat::ChannelsLast) ||
(weight_memory_format == at::MemoryFormat::ChannelsLast)
);
if (can_use_cudnn_channels_last_2d) {
return at::MemoryFormat::ChannelsLast;
}
bool can_use_cudnn_channels_last_3d = (cudnn_version >= 8005) && (weight_ndim == 5) && (
(input_memory_format == at::MemoryFormat::ChannelsLast3d) ||
(weight_memory_format == at::MemoryFormat::ChannelsLast3d)
);
if (can_use_cudnn_channels_last_3d) {
return at::MemoryFormat::ChannelsLast3d;
}
return at::MemoryFormat::Contiguous;
}
// controls whether emptyCache will be called following cudnn conv benchmarking
TORCH_API void _cudnn_set_conv_benchmark_empty_cache(bool enable);
TORCH_API bool _cudnn_get_conv_benchmark_empty_cache();
static inline bool miopen_conv_use_channels_last(const at::Tensor& input, const at::Tensor& weight) {
// disable NHWC for float64 input.
if (!at::detail::getCUDAHooks().compiledWithMIOpen() ||
input.scalar_type() == at::kDouble ||
weight.scalar_type() == at::kDouble) {
return false;
}
bool can_use_miopen_channels_last_2d = false;
#if defined(USE_ROCM) && (ROCM_VERSION >= 40300)
// TODO: Remove PYTORCH_MIOPEN_SUGGEST_NHWC once ROCm officially supports NHWC in MIOpen
// See #64427
static c10::optional<bool> PYTORCH_MIOPEN_SUGGEST_NHWC = c10::utils::check_env("PYTORCH_MIOPEN_SUGGEST_NHWC");
auto input_memory_format = input.suggest_memory_format();
auto weight_memory_format = weight.suggest_memory_format();
can_use_miopen_channels_last_2d = PYTORCH_MIOPEN_SUGGEST_NHWC && *PYTORCH_MIOPEN_SUGGEST_NHWC && (
( (input_memory_format == at::MemoryFormat::ChannelsLast) ||
(weight_memory_format == at::MemoryFormat::ChannelsLast) )
);
#endif
bool can_use_miopen_channels_last_3d = false;
return can_use_miopen_channels_last_2d || can_use_miopen_channels_last_3d;
}
static inline bool mkldnn_conv_use_channels_last(const at::Tensor& input, const at::Tensor& weight) {
// disable NHWC for float64 input.
if (input.scalar_type() == at::kDouble ||
weight.scalar_type() == at::kDouble) {
return false;
}
// disable NHWC for MkldnnCPU tensor.
if (input.is_mkldnn() || weight.is_mkldnn()) {
return false;
}
auto input_memory_format = input.suggest_memory_format();
auto weight_memory_format = weight.suggest_memory_format();
bool can_use_mkldnn_channels_last_2d =
(input_memory_format == at::MemoryFormat::ChannelsLast) ||
(weight_memory_format == at::MemoryFormat::ChannelsLast);
bool can_use_mkldnn_channels_last_3d =
(input_memory_format == at::MemoryFormat::ChannelsLast3d) ||
(weight_memory_format == at::MemoryFormat::ChannelsLast3d);
return can_use_mkldnn_channels_last_2d || can_use_mkldnn_channels_last_3d;
}
static inline bool thnn_conv_use_channels_last(const at::Tensor& input, const at::Tensor& weight) {
auto input_memory_format = input.suggest_memory_format();
auto weight_memory_format = weight.suggest_memory_format();
bool can_use_thnn_channels_last_2d = input.device().is_cpu() && (
(input_memory_format == at::MemoryFormat::ChannelsLast) || (
weight_memory_format == at::MemoryFormat::ChannelsLast));
return can_use_thnn_channels_last_2d;
}
static inline bool xpu_conv_use_channels_last(const at::Tensor& input, const at::Tensor& weight) {
// check layout only for xpu tensor.
if (!input.is_xpu() || !weight.is_xpu()) {
return false;
}
// disable NHWC for float64 input.
if (input.scalar_type() == at::kDouble ||
weight.scalar_type() == at::kDouble) {
return false;
}
auto input_memory_format = input.suggest_memory_format();
auto weight_memory_format = weight.suggest_memory_format();
bool can_use_xpu_channels_last_2d =
(input_memory_format == at::MemoryFormat::ChannelsLast) ||
(weight_memory_format == at::MemoryFormat::ChannelsLast);
bool can_use_xpu_channels_last_3d =
(input_memory_format == at::MemoryFormat::ChannelsLast3d) ||
(weight_memory_format == at::MemoryFormat::ChannelsLast3d);
return can_use_xpu_channels_last_2d || can_use_xpu_channels_last_3d;
}
} // namespace at::native