ai-content-maker/.venv/Lib/site-packages/torch/include/ATen/native/MaxPooling.h

98 lines
3.2 KiB
C++

#pragma once
#include <ATen/core/Tensor.h>
#include <ATen/Parallel.h>
#include <ATen/native/DispatchStub.h>
#include <ATen/native/Pool.h>
namespace at::native {
static void check_max_pool1d(
const Tensor& self,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
IntArrayRef dilation,
bool ceil_mode) {
TORCH_CHECK(
self.dim() == 2 || self.dim() == 3,
"max_pool1d() Expected 2D or 3D input tensor, but got ", self.sym_sizes());
TORCH_CHECK(
kernel_size.size() == 1,
"max_pool1d() kernel_size must be an int, list of ints or tuple of ints of size 1 but got size ",
kernel_size.size());
TORCH_CHECK(
stride.empty() || stride.size() == 1,
"max_pool1d() stride must be None, an int, list of ints, or tuple of ints of size 1 but got size ",
stride.size());
TORCH_CHECK(
padding.size() == 1,
"max_pool1d() padding must be an int, list of ints, or tuple of ints of size 1 but got size ",
padding.size());
TORCH_CHECK(
dilation.size() == 1,
"max_pool1d() dilation must be an int, list of ints or tuple of ints of size 1 but got size ",
dilation.size());
// If stride=None then set it to kernel_size
if (stride.empty()) {
stride = kernel_size;
}
TORCH_CHECK(
kernel_size[0] > 0,
"max_pool1d() kernel_size must be greater than zero, but got ",
kernel_size[0]);
TORCH_CHECK(
stride[0] > 0, "max_pool1d() stride must be greater than zero, but got ", stride[0]);
TORCH_CHECK(
padding[0] >= 0, "max_pool1d() padding must be non-negative, but got ", padding[0]);
TORCH_CHECK(
padding[0] <= kernel_size[0] / 2,
"max_pool1d() padding should be at most half of kernel size, but got padding=",
padding[0],
" and kernel_size=",
kernel_size[0]);
TORCH_CHECK(
dilation[0] > 0, "max_pool1d() dilation must be greater than zero, but got ", dilation[0]);
const int64_t OW = pooling_output_shape(self.sym_size(-1).guard_int(__FILE__, __LINE__), kernel_size[0], padding[0], stride[0], dilation[0], ceil_mode);
TORCH_CHECK(OW > 0, "max_pool1d() Invalid computed output size: ", OW);
}
// TODO(Heitor) Template by dimension
struct PoolingParams1D {
int64_t NB; // Number of batches
int64_t NC; // Number of channels
int64_t IW; // Input width
int64_t OW; // Output width
int64_t KW; // Kernel width
int64_t SJ; // Column stride
int64_t PJ; // Column padding
int64_t DJ; // Column dilation
// Return index of input element for the given kernel and output index
inline int64_t index(int64_t kj, int64_t oj) const {
return oj * SJ + kj * DJ - PJ;
}
// Return index of first output within bounds for this kernel index
inline int64_t valid_output_start(int64_t kj) const {
int64_t ij = index(kj, 0);;
return ij < 0 ? at::divup(-ij, SJ) : 0;
}
// Return index one past last output within bounds for this kernel index
inline int64_t valid_output_end(int64_t kj) const {
int64_t ij = index(kj, OW - 1);
return ij >= IW ? OW - at::divup(ij - (IW - 1), SJ) : OW;
}
};
using pooling_fn = void (*)(Tensor&, const Tensor&, const PoolingParams1D&);
DECLARE_DISPATCH(pooling_fn, max_pool1d_stub);
} // namespace at::native