ai-content-maker/.venv/Lib/site-packages/torch/include/ATen/native/Repeat.h

49 lines
1.4 KiB
C++

#pragma once
#include <ATen/core/Tensor.h>
#include <ATen/TensorOperators.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#else
#include <ATen/ops/empty.h>
#include <ATen/ops/empty_like.h>
#endif
namespace at::native {
template <
typename index_t,
void compute(index_t*, int64_t*, index_t*, int64_t, int64_t)>
static inline Tensor repeat_interleave_common(
const Tensor& repeats,
c10::optional<int64_t> output_size) {
TORCH_CHECK(
repeats.dim() == 1, "repeat_interleave only accept 1D vector as repeat");
TORCH_CHECK(
repeats.scalar_type() == at::kLong || repeats.scalar_type() == at::kInt,
"repeats has to be Long or Int tensor");
if (repeats.size(0) == 0) {
return at::empty_like(repeats, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
}
Tensor repeats_ = repeats.contiguous();
Tensor cumsum = repeats.cumsum(0);
int64_t total;
if (output_size.has_value()) {
total = output_size.value();
} else {
total = cumsum[-1].item<int64_t>();
TORCH_CHECK(
(repeats >= 0).all().item<uint8_t>(), "repeats can not be negative");
}
Tensor result = at::empty({total}, repeats.options());
index_t* repeat_ptr = repeats_.data_ptr<index_t>();
int64_t* cumsum_ptr = cumsum.data_ptr<int64_t>();
index_t* result_ptr = result.data_ptr<index_t>();
compute(repeat_ptr, cumsum_ptr, result_ptr, repeats.size(0), total);
return result;
}
} // namespace at::native