150 lines
5.1 KiB
C++
150 lines
5.1 KiB
C++
#pragma once
|
|
|
|
#include <ATen/core/Tensor.h>
|
|
#include <ATen/TensorUtils.h>
|
|
#include <ATen/Utils.h>
|
|
#include <ATen/Parallel.h>
|
|
#include <ATen/native/cpu/utils.h>
|
|
#include <c10/util/irange.h>
|
|
|
|
#include <algorithm>
|
|
|
|
namespace at::native {
|
|
|
|
template <typename T>
|
|
static void im2col(
|
|
const T* data_im,
|
|
const int64_t channels,
|
|
const int64_t height,
|
|
const int64_t width,
|
|
const int64_t output_height,
|
|
const int64_t output_width,
|
|
const int64_t kernel_h,
|
|
const int64_t kernel_w,
|
|
const int64_t pad_h,
|
|
const int64_t pad_w,
|
|
const int64_t stride_h,
|
|
const int64_t stride_w,
|
|
const int64_t dilation_h,
|
|
const int64_t dilation_w,
|
|
T* data_col,
|
|
bool is_channels_last = false) {
|
|
const int64_t height_col = output_height;
|
|
const int64_t width_col = output_width;
|
|
const int64_t channels_col = channels * kernel_h * kernel_w;
|
|
|
|
if (is_channels_last) {
|
|
at::parallel_for(0, height_col * width_col, 0, [&](int64_t begin, int64_t end) {
|
|
int64_t h_col{0}, w_col{0};
|
|
data_index_init(begin, h_col, height_col, w_col, width_col);
|
|
|
|
for (const auto i_col : c10::irange(begin, end)) {
|
|
for (const auto h_offset : c10::irange(kernel_h)) {
|
|
int64_t h_im = h_col * stride_h - pad_h + h_offset * dilation_h;
|
|
for (const auto w_offset : c10::irange(kernel_w)) {
|
|
int64_t w_im = w_col * stride_w - pad_w + w_offset * dilation_w;
|
|
|
|
const T* slice_im = data_im + (h_im * width + w_im) * channels;
|
|
T* slice_col = data_col + (i_col * kernel_h * kernel_w + h_offset * kernel_w + w_offset) * channels;
|
|
|
|
if (h_im >= 0 && w_im >= 0 && h_im < height && w_im < width) {
|
|
std::copy_n(slice_im, channels, slice_col);
|
|
} else {
|
|
std::fill_n(slice_col, channels, T(0));
|
|
}
|
|
}
|
|
}
|
|
|
|
// move the next index
|
|
data_index_step(h_col, height_col, w_col, width_col);
|
|
}
|
|
});
|
|
} else {
|
|
at::parallel_for(0, channels_col, 0, [&](int64_t begin, int64_t end) {
|
|
int64_t c_im{0}, h_offset{0}, w_offset{0};
|
|
data_index_init(begin, c_im, channels, h_offset, kernel_h, w_offset, kernel_w);
|
|
|
|
for (const auto c_col : c10::irange(begin, end)) {
|
|
for (const auto h_col : c10::irange(height_col)) {
|
|
int64_t h_im = h_col * stride_h - pad_h + h_offset * dilation_h;
|
|
for (const auto w_col : c10::irange(width_col)) {
|
|
int64_t w_im = w_col * stride_w - pad_w + w_offset * dilation_w;
|
|
data_col[(c_col * height_col + h_col) * width_col + w_col] =
|
|
(h_im >= 0 && w_im >= 0 && h_im < height && w_im < width)
|
|
? data_im[(c_im * height + h_im) * width + w_im]
|
|
: static_cast<T>(0);
|
|
}
|
|
}
|
|
|
|
// move to the next index
|
|
data_index_step(c_im, channels, h_offset, kernel_h, w_offset, kernel_w);
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
static void col2im(
|
|
const T* data_col,
|
|
const int64_t channels,
|
|
const int64_t height,
|
|
const int64_t width,
|
|
const int64_t output_height,
|
|
const int64_t output_width,
|
|
const int64_t kernel_h,
|
|
const int64_t kernel_w,
|
|
const int64_t pad_h,
|
|
const int64_t pad_w,
|
|
const int64_t stride_h,
|
|
const int64_t stride_w,
|
|
const int64_t dilation_h,
|
|
const int64_t dilation_w,
|
|
T* data_im,
|
|
bool is_channels_last = false) {
|
|
std::fill_n(data_im, height * width * channels, T(0));
|
|
|
|
const int64_t height_col = output_height;
|
|
const int64_t width_col = output_width;
|
|
const int64_t channels_col = channels * kernel_h * kernel_w;
|
|
|
|
if (is_channels_last) {
|
|
for (const auto h_col : c10::irange(height_col)) {
|
|
for (const auto w_col : c10::irange(width_col)) {
|
|
for (const auto h_offset : c10::irange(kernel_h)) {
|
|
int64_t h_im = h_col * stride_h - pad_h + h_offset * dilation_h;
|
|
for (const auto w_offset : c10::irange(kernel_w)) {
|
|
int64_t w_im = w_col * stride_w - pad_w + w_offset * dilation_w;
|
|
|
|
T* slice_im = data_im + (h_im * width + w_im) * channels;
|
|
const T* slice_col = data_col + ((h_col * width_col + w_col) * kernel_h * kernel_w
|
|
+ h_offset * kernel_w + w_offset) * channels;
|
|
|
|
if (h_im >= 0 && h_im < height && w_im >= 0 && w_im < width) {
|
|
std::transform(slice_col, slice_col + channels, slice_im, slice_im, std::plus<T>());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
for (const auto c_col : c10::irange(channels_col)) {
|
|
int64_t w_offset = c_col % kernel_w;
|
|
int64_t h_offset = (c_col / kernel_w) % kernel_h;
|
|
int64_t c_im = c_col / kernel_h / kernel_w;
|
|
|
|
for (const auto h_col : c10::irange(height_col)) {
|
|
int64_t h_im = h_col * stride_h - pad_h + h_offset * dilation_h;
|
|
for (const auto w_col : c10::irange(width_col)) {
|
|
int64_t w_im = w_col * stride_w - pad_w + w_offset * dilation_w;
|
|
|
|
if (h_im >= 0 && h_im < height && w_im >= 0 && w_im < width)
|
|
data_im[(c_im * height + h_im) * width + w_im] +=
|
|
data_col[(c_col * height_col + h_col) * width_col + w_col];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace at::native
|