ai-content-maker/.venv/Lib/site-packages/torch/nn/attention/_utils.py

58 lines
2.0 KiB
Python

"""Defines utilities for interacting with scaled_dot_product_attention"""
import math
from typing import List, Optional
import torch
__all__: List[str] = []
def _input_requires_grad(*tensors: torch.Tensor) -> bool:
"""Returns True if any of the tensors requires grad"""
return any(t.requires_grad for t in tensors)
def _postprocess_flash_output(inpt_tensor: torch.Tensor, og_size: int) -> torch.Tensor:
"""Handles the unpad of the last dimension"""
if inpt_tensor.size(-1) != og_size:
return inpt_tensor[..., :og_size]
return inpt_tensor
def _calculate_scale(head_dim_size: int, scale: Optional[float]) -> float:
"""
For FlashAttention we pad the head dimension to be a multiple of 8 so we need to scale the output
by the original head size and not the padded.
"""
if scale is not None:
return scale
return 1.0 / math.sqrt(head_dim_size)
def _validate_sdpa_input(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
dropout_p=0.0,
is_causal=False,
scale=None,
):
if query.dtype != key.dtype or query.dtype != value.dtype:
raise ValueError(
f"Expected query, key, and value to have the same dtype, "
f"but got query.dtype: {query.dtype}, key.dtype: {key.dtype}, "
f"and value.dtype: {value.dtype} instead."
)
if query.device != key.device or query.device != value.device:
raise ValueError(
f"Expected query, key, and value to have the same device type, "
f"but got query.device: {query.device}, key.device: {key.device}, "
f"and value.device: {value.device} instead."
)
if query.dim() < 2 or key.dim() < 2 or value.dim() < 2:
raise ValueError(
f"Expected query, key, and value to all be at least 2 dimensional, but got query.dim: "
f"{query.dim()}, key.dim: {key.dim()} and value.dim: {value.dim()} instead."
)