ai-content-maker/.venv/Lib/site-packages/torch/nn/parallel/parallel_apply.py

111 lines
4.2 KiB
Python

import threading
import torch
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union, cast
from ..modules import Module
from torch.cuda._utils import _get_device_index
from torch.cuda.amp import autocast
from torch._utils import ExceptionWrapper
__all__ = ['get_a_var', 'parallel_apply']
def get_a_var(obj: Union[torch.Tensor, List[Any], Tuple[Any, ...], Dict[Any, Any]]) -> Optional[torch.Tensor]:
if isinstance(obj, torch.Tensor):
return obj
if isinstance(obj, (list, tuple)):
for result in map(get_a_var, obj):
if isinstance(result, torch.Tensor):
return result
if isinstance(obj, dict):
for result in map(get_a_var, obj.items()):
if isinstance(result, torch.Tensor):
return result
return None
def parallel_apply(
modules: Sequence[Module],
inputs: Sequence[Any],
kwargs_tup: Optional[Sequence[Dict[str, Any]]] = None,
devices: Optional[Sequence[Optional[Union[int, torch.device]]]] = None,
) -> List[Any]:
r"""Apply each `module` in :attr:`modules` in parallel on each of :attr:`devices`.
Args:
modules (Module): modules to be parallelized
inputs (tensor): inputs to the modules
devices (list of int or torch.device): CUDA devices
:attr:`modules`, :attr:`inputs`, :attr:`kwargs_tup` (if given), and
:attr:`devices` (if given) should all have same length. Moreover, each
element of :attr:`inputs` can either be a single object as the only argument
to a module, or a collection of positional arguments.
"""
assert len(modules) == len(inputs), f'The number of modules {len(modules)} is not equal to the number of inputs {len(inputs)}'
if kwargs_tup is not None:
assert len(modules) == len(kwargs_tup)
else:
kwargs_tup = (cast(Dict[str, Any], {}),) * len(modules)
if devices is not None:
assert len(modules) == len(devices)
else:
devices = [None] * len(modules)
devices = [_get_device_index(x, True) for x in devices]
streams = [torch.cuda.current_stream(x) for x in devices]
lock = threading.Lock()
results = {}
grad_enabled, autocast_enabled = torch.is_grad_enabled(), torch.is_autocast_enabled()
def _worker(
i: int,
module: Module,
input: Any,
kwargs: Dict[str, Any],
device: Optional[Union[int, torch.device]] = None,
stream: Optional[torch.cuda.Stream] = None,
) -> None:
torch.set_grad_enabled(grad_enabled)
if device is None:
t = get_a_var(input)
if t is None:
with lock:
results[i] = ExceptionWrapper(
where=f"in replica {i}, no device was provided and no tensor input was found; "
"device cannot be resolved")
return
device = t.get_device()
if stream is None:
stream = torch.cuda.current_stream(device)
try:
with torch.cuda.device(device), torch.cuda.stream(stream), autocast(enabled=autocast_enabled):
# this also avoids accidental slicing of `input` if it is a Tensor
if not isinstance(input, (list, tuple)):
input = (input,)
output = module(*input, **kwargs)
with lock:
results[i] = output
except Exception:
with lock:
results[i] = ExceptionWrapper(
where=f"in replica {i} on device {device}")
if len(modules) > 1:
threads = [threading.Thread(target=_worker,
args=(i, module, input, kwargs, device, stream))
for i, (module, input, kwargs, device, stream) in
enumerate(zip(modules, inputs, kwargs_tup, devices, streams))]
for thread in threads:
thread.start()
for thread in threads:
thread.join()
else:
_worker(0, modules[0], inputs[0], kwargs_tup[0], devices[0], streams[0])
outputs = []
for i in range(len(inputs)):
output = results[i]
if isinstance(output, ExceptionWrapper):
output.reraise()
outputs.append(output)
return outputs