ai-content-maker/.venv/Lib/site-packages/torch/utils/_sympy/solve.py

176 lines
6.2 KiB
Python

import logging
from typing import Dict, Optional, Tuple, Type
import sympy
from torch.utils._sympy.functions import FloorDiv
log = logging.getLogger(__name__)
_MIRROR_REL_OP: Dict[Type[sympy.Basic], Type[sympy.Rel]] = {
sympy.Eq: sympy.Eq,
sympy.Ne: sympy.Ne,
sympy.Ge: sympy.Le,
sympy.Gt: sympy.Lt,
sympy.Le: sympy.Ge,
sympy.Lt: sympy.Gt,
}
INEQUALITY_TYPES = (sympy.Gt, sympy.Ge, sympy.Lt, sympy.Le)
def mirror_rel_op(type: Type) -> Optional[Type[sympy.Rel]]:
return _MIRROR_REL_OP.get(type, None)
# Tries to simplify 'expr', so as to leave only 'thing' in the left-hand side.
#
# Returns a tuple of:
# 1. The simplified expression
# 2. The expression on the right-hand side
#
# Returns 'None' if it can't reach a state where the only thing in the left
# hand side is 'thing'.
#
# 'trials': number of times 'try_solve' will try to isolate 'thing' to the
# left-hand side.
#
# 'floordiv_inequality': flag to enable conversion of 'FloorDiv' into
# inequalities.
def try_solve(
expr: sympy.Basic,
thing: sympy.Basic,
trials: int = 5,
floordiv_inequality: bool = True,
) -> Optional[Tuple[sympy.Rel, sympy.Basic]]:
mirror = mirror_rel_op(type(expr))
# Ignore unsupported expressions:
# - Those that are not relational operations
# - Those that don't have a mirror (just avoiding unexpected classes)
if not isinstance(expr, sympy.Rel) or mirror is None:
log.debug("expression with unsupported type: %s", type(expr))
return None
lhs_has_thing = expr.lhs.has(thing)
rhs_has_thing = expr.rhs.has(thing)
# Give up when 'thing' appears on both sides of the relational expression.
# That is because, as is, we assume the thing we are trying to isolate is
# only on the right-hand side.
if lhs_has_thing and rhs_has_thing:
log.debug("thing (%s) found in both sides of expression: %s", thing, expr)
return None
# Try considering both LHS and RHS by mirroring the original expression:
# a < b ==> b > a
expressions = []
# Add each version of 'expr' if 'thing' is in its left-hand side.
if lhs_has_thing:
expressions.append(expr)
if rhs_has_thing:
expressions.append(mirror(expr.rhs, expr.lhs))
for e in expressions:
if e is None:
continue
assert isinstance(e, sympy.Rel)
for _ in range(trials):
trial = _try_isolate_lhs(e, thing, floordiv_inequality=floordiv_inequality)
# Stop if there was no change in this trial.
if trial == e:
break
e = trial # type: ignore[assignment]
# Return if we were able to isolate 'thing' on the left-hand side.
if isinstance(e, sympy.Rel) and e.lhs == thing:
return e, e.rhs
return None
def _try_isolate_lhs(
expr: sympy.Basic, thing: sympy.Basic, floordiv_inequality: bool
) -> sympy.Basic:
e = expr
op = type(expr)
if isinstance(e, sympy.Rel):
# Move any constants in the left-hand side to the right-hand side.
lhs_not_thing = (
sum([a for a in e.lhs.args if not a.has(thing)])
if isinstance(e.lhs, sympy.Add)
else 0
)
e = op(expr.lhs - lhs_not_thing, expr.rhs - lhs_not_thing) # type: ignore[attr-defined]
# Divide both sides by the factors that don't contain thing.
if isinstance(e, sympy.Rel) and isinstance(e.lhs, sympy.Mul):
lhs, rhs = e.args
other = sympy.Mul(*[a for a in lhs.args if not a.has(thing)])
# If we can't tell whether 'other' is negative or positive, we do nothing.
# That is because we don't know whether we have mirror the operation or not.
if not (isinstance(e, INEQUALITY_TYPES) and other.is_negative is None):
# Divide both sides by 'other'.
lhs = lhs / other
rhs = rhs / other
# If 'e' is an inequality and 'other' is negative, we have to
# mirror the expression.
if isinstance(e, INEQUALITY_TYPES) and other.is_negative:
op = mirror_rel_op(op) # type: ignore[assignment]
assert op is not None
e = op(lhs, rhs)
################################################################################
# left-hand side is FloorDiv
################################################################################
#
# Given the expression: a // b op c
# where 'op' is a relational operation, these rules only work if:
# - b > 0
# - c is an integer
if (
floordiv_inequality
and isinstance(e, sympy.Rel)
and isinstance(e.lhs, FloorDiv)
and e.lhs.divisor.is_positive
and e.rhs.is_integer
):
# a // b == expr
# => a >= (b * expr) and a < (b * (expr + 1))
if isinstance(expr, sympy.Eq):
numerator, denominator = e.lhs.args
return sympy.And(
sympy.Ge(numerator, (e.rhs * denominator)), # type: ignore[arg-type]
sympy.Lt(numerator, ((e.rhs + 1) * denominator)), # type: ignore[arg-type]
)
# a // b != expr
# => a < (b * expr) or a >= (b * (expr + 1))
if isinstance(expr, sympy.Ne):
numerator, denominator = e.lhs.args
return sympy.Or(
sympy.Lt(numerator, (e.rhs * denominator)), # type: ignore[arg-type]
sympy.Ge(numerator, ((e.rhs + 1) * denominator)), # type: ignore[arg-type]
)
# The transformations below only work if b is positive.
# Note: we only have this information for constants.
# a // b > expr => a >= b * (expr + 1)
# a // b >= expr => a >= b * expr
if isinstance(expr, (sympy.Gt, sympy.Ge)):
quotient = e.rhs if isinstance(expr, sympy.Ge) else (e.rhs + 1) # type: ignore[arg-type]
return sympy.Ge(e.lhs.args[0], (quotient * e.lhs.args[1])) # type: ignore[arg-type]
# a // b < expr => a < b * expr
# a // b <= expr => a < b * (expr + 1)
if isinstance(expr, (sympy.Lt, sympy.Le)):
quotient = e.rhs if isinstance(expr, sympy.Lt) else (e.rhs + 1) # type: ignore[arg-type]
return sympy.Lt(e.lhs.args[0], (quotient * e.lhs.args[1])) # type: ignore[arg-type]
return e