176 lines
6.2 KiB
Python
176 lines
6.2 KiB
Python
import logging
|
|
|
|
from typing import Dict, Optional, Tuple, Type
|
|
|
|
import sympy
|
|
|
|
from torch.utils._sympy.functions import FloorDiv
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
_MIRROR_REL_OP: Dict[Type[sympy.Basic], Type[sympy.Rel]] = {
|
|
sympy.Eq: sympy.Eq,
|
|
sympy.Ne: sympy.Ne,
|
|
sympy.Ge: sympy.Le,
|
|
sympy.Gt: sympy.Lt,
|
|
sympy.Le: sympy.Ge,
|
|
sympy.Lt: sympy.Gt,
|
|
}
|
|
|
|
INEQUALITY_TYPES = (sympy.Gt, sympy.Ge, sympy.Lt, sympy.Le)
|
|
|
|
|
|
def mirror_rel_op(type: Type) -> Optional[Type[sympy.Rel]]:
|
|
return _MIRROR_REL_OP.get(type, None)
|
|
|
|
|
|
# Tries to simplify 'expr', so as to leave only 'thing' in the left-hand side.
|
|
#
|
|
# Returns a tuple of:
|
|
# 1. The simplified expression
|
|
# 2. The expression on the right-hand side
|
|
#
|
|
# Returns 'None' if it can't reach a state where the only thing in the left
|
|
# hand side is 'thing'.
|
|
#
|
|
# 'trials': number of times 'try_solve' will try to isolate 'thing' to the
|
|
# left-hand side.
|
|
#
|
|
# 'floordiv_inequality': flag to enable conversion of 'FloorDiv' into
|
|
# inequalities.
|
|
def try_solve(
|
|
expr: sympy.Basic,
|
|
thing: sympy.Basic,
|
|
trials: int = 5,
|
|
floordiv_inequality: bool = True,
|
|
) -> Optional[Tuple[sympy.Rel, sympy.Basic]]:
|
|
mirror = mirror_rel_op(type(expr))
|
|
|
|
# Ignore unsupported expressions:
|
|
# - Those that are not relational operations
|
|
# - Those that don't have a mirror (just avoiding unexpected classes)
|
|
if not isinstance(expr, sympy.Rel) or mirror is None:
|
|
log.debug("expression with unsupported type: %s", type(expr))
|
|
return None
|
|
|
|
lhs_has_thing = expr.lhs.has(thing)
|
|
rhs_has_thing = expr.rhs.has(thing)
|
|
|
|
# Give up when 'thing' appears on both sides of the relational expression.
|
|
# That is because, as is, we assume the thing we are trying to isolate is
|
|
# only on the right-hand side.
|
|
if lhs_has_thing and rhs_has_thing:
|
|
log.debug("thing (%s) found in both sides of expression: %s", thing, expr)
|
|
return None
|
|
|
|
# Try considering both LHS and RHS by mirroring the original expression:
|
|
# a < b ==> b > a
|
|
expressions = []
|
|
|
|
# Add each version of 'expr' if 'thing' is in its left-hand side.
|
|
if lhs_has_thing:
|
|
expressions.append(expr)
|
|
if rhs_has_thing:
|
|
expressions.append(mirror(expr.rhs, expr.lhs))
|
|
|
|
for e in expressions:
|
|
if e is None:
|
|
continue
|
|
|
|
assert isinstance(e, sympy.Rel)
|
|
|
|
for _ in range(trials):
|
|
trial = _try_isolate_lhs(e, thing, floordiv_inequality=floordiv_inequality)
|
|
# Stop if there was no change in this trial.
|
|
if trial == e:
|
|
break
|
|
e = trial # type: ignore[assignment]
|
|
|
|
# Return if we were able to isolate 'thing' on the left-hand side.
|
|
if isinstance(e, sympy.Rel) and e.lhs == thing:
|
|
return e, e.rhs
|
|
|
|
return None
|
|
|
|
|
|
def _try_isolate_lhs(
|
|
expr: sympy.Basic, thing: sympy.Basic, floordiv_inequality: bool
|
|
) -> sympy.Basic:
|
|
e = expr
|
|
op = type(expr)
|
|
|
|
if isinstance(e, sympy.Rel):
|
|
# Move any constants in the left-hand side to the right-hand side.
|
|
lhs_not_thing = (
|
|
sum([a for a in e.lhs.args if not a.has(thing)])
|
|
if isinstance(e.lhs, sympy.Add)
|
|
else 0
|
|
)
|
|
e = op(expr.lhs - lhs_not_thing, expr.rhs - lhs_not_thing) # type: ignore[attr-defined]
|
|
|
|
# Divide both sides by the factors that don't contain thing.
|
|
if isinstance(e, sympy.Rel) and isinstance(e.lhs, sympy.Mul):
|
|
lhs, rhs = e.args
|
|
other = sympy.Mul(*[a for a in lhs.args if not a.has(thing)])
|
|
|
|
# If we can't tell whether 'other' is negative or positive, we do nothing.
|
|
# That is because we don't know whether we have mirror the operation or not.
|
|
if not (isinstance(e, INEQUALITY_TYPES) and other.is_negative is None):
|
|
# Divide both sides by 'other'.
|
|
lhs = lhs / other
|
|
rhs = rhs / other
|
|
|
|
# If 'e' is an inequality and 'other' is negative, we have to
|
|
# mirror the expression.
|
|
if isinstance(e, INEQUALITY_TYPES) and other.is_negative:
|
|
op = mirror_rel_op(op) # type: ignore[assignment]
|
|
|
|
assert op is not None
|
|
e = op(lhs, rhs)
|
|
|
|
################################################################################
|
|
# left-hand side is FloorDiv
|
|
################################################################################
|
|
#
|
|
# Given the expression: a // b op c
|
|
# where 'op' is a relational operation, these rules only work if:
|
|
# - b > 0
|
|
# - c is an integer
|
|
if (
|
|
floordiv_inequality
|
|
and isinstance(e, sympy.Rel)
|
|
and isinstance(e.lhs, FloorDiv)
|
|
and e.lhs.divisor.is_positive
|
|
and e.rhs.is_integer
|
|
):
|
|
# a // b == expr
|
|
# => a >= (b * expr) and a < (b * (expr + 1))
|
|
if isinstance(expr, sympy.Eq):
|
|
numerator, denominator = e.lhs.args
|
|
return sympy.And(
|
|
sympy.Ge(numerator, (e.rhs * denominator)), # type: ignore[arg-type]
|
|
sympy.Lt(numerator, ((e.rhs + 1) * denominator)), # type: ignore[arg-type]
|
|
)
|
|
# a // b != expr
|
|
# => a < (b * expr) or a >= (b * (expr + 1))
|
|
if isinstance(expr, sympy.Ne):
|
|
numerator, denominator = e.lhs.args
|
|
return sympy.Or(
|
|
sympy.Lt(numerator, (e.rhs * denominator)), # type: ignore[arg-type]
|
|
sympy.Ge(numerator, ((e.rhs + 1) * denominator)), # type: ignore[arg-type]
|
|
)
|
|
# The transformations below only work if b is positive.
|
|
# Note: we only have this information for constants.
|
|
# a // b > expr => a >= b * (expr + 1)
|
|
# a // b >= expr => a >= b * expr
|
|
if isinstance(expr, (sympy.Gt, sympy.Ge)):
|
|
quotient = e.rhs if isinstance(expr, sympy.Ge) else (e.rhs + 1) # type: ignore[arg-type]
|
|
return sympy.Ge(e.lhs.args[0], (quotient * e.lhs.args[1])) # type: ignore[arg-type]
|
|
# a // b < expr => a < b * expr
|
|
# a // b <= expr => a < b * (expr + 1)
|
|
if isinstance(expr, (sympy.Lt, sympy.Le)):
|
|
quotient = e.rhs if isinstance(expr, sympy.Lt) else (e.rhs + 1) # type: ignore[arg-type]
|
|
return sympy.Lt(e.lhs.args[0], (quotient * e.lhs.args[1])) # type: ignore[arg-type]
|
|
|
|
return e
|