161 lines
5.4 KiB
Python
161 lines
5.4 KiB
Python
import inspect
|
|
import warnings
|
|
|
|
from typing import Any, List, Optional, Set
|
|
|
|
import torch
|
|
|
|
from torch.utils.data.datapipes.iter.sharding import (
|
|
_ShardingIterDataPipe,
|
|
SHARDING_PRIORITIES,
|
|
)
|
|
from torch.utils.data.graph import DataPipe, DataPipeGraph, traverse_dps
|
|
|
|
__all__ = [
|
|
"apply_random_seed",
|
|
"apply_sharding",
|
|
"apply_shuffle_seed",
|
|
"apply_shuffle_settings",
|
|
"get_all_graph_pipes",
|
|
]
|
|
|
|
|
|
def get_all_graph_pipes(graph: DataPipeGraph) -> List[DataPipe]:
|
|
return _get_all_graph_pipes_helper(graph, set())
|
|
|
|
|
|
def _get_all_graph_pipes_helper(graph: DataPipeGraph, id_cache: Set[int]) -> List[DataPipe]:
|
|
results: List[DataPipe] = []
|
|
for dp_id, (datapipe, sub_graph) in graph.items():
|
|
if dp_id in id_cache:
|
|
continue
|
|
id_cache.add(dp_id)
|
|
results.append(datapipe)
|
|
results.extend(_get_all_graph_pipes_helper(sub_graph, id_cache))
|
|
return results
|
|
|
|
|
|
def _is_sharding_datapipe(datapipe: DataPipe) -> bool:
|
|
if isinstance(datapipe, _ShardingIterDataPipe):
|
|
return True
|
|
if hasattr(datapipe, "apply_sharding") and inspect.ismethod(datapipe.apply_sharding):
|
|
return True
|
|
return False
|
|
|
|
|
|
def apply_sharding(datapipe: DataPipe,
|
|
num_of_instances: int,
|
|
instance_id: int,
|
|
sharding_group=SHARDING_PRIORITIES.DEFAULT) -> DataPipe:
|
|
r"""
|
|
Apply dynamic sharding over the ``sharding_filter`` DataPipe that has a method ``apply_sharding``.
|
|
|
|
RuntimeError will be raised when multiple ``sharding_filter`` are presented in the same branch.
|
|
"""
|
|
graph = traverse_dps(datapipe)
|
|
|
|
def _helper(graph, prev_applied=None):
|
|
for (dp, sub_graph) in graph.values():
|
|
applied = None
|
|
if _is_sharding_datapipe(dp):
|
|
if prev_applied is not None:
|
|
raise RuntimeError("Sharding twice on a single pipeline is likely unintended and will cause data loss. "
|
|
f"Sharding already applied to {prev_applied} while trying to apply to {dp}")
|
|
# For BC, only provide sharding_group if accepted
|
|
sig = inspect.signature(dp.apply_sharding)
|
|
if len(sig.parameters) < 3:
|
|
dp.apply_sharding(num_of_instances, instance_id)
|
|
else:
|
|
dp.apply_sharding(num_of_instances, instance_id, sharding_group=sharding_group)
|
|
applied = dp
|
|
if applied is None:
|
|
applied = prev_applied
|
|
_helper(sub_graph, applied)
|
|
|
|
_helper(graph)
|
|
|
|
return datapipe
|
|
|
|
|
|
def _is_shuffle_datapipe(datapipe: DataPipe) -> bool:
|
|
if not hasattr(datapipe, "set_shuffle") or not hasattr(datapipe, "set_seed"):
|
|
return False
|
|
if not inspect.ismethod(datapipe.set_shuffle) or not inspect.ismethod(datapipe.set_seed):
|
|
return False
|
|
return True
|
|
|
|
|
|
def apply_shuffle_settings(datapipe: DataPipe, shuffle: Optional[bool] = None) -> DataPipe:
|
|
r"""
|
|
Traverse the graph of ``DataPipes`` to find and set shuffle attribute.
|
|
|
|
Apply the method to each `DataPipe` that has APIs of ``set_shuffle``
|
|
and ``set_seed``.
|
|
|
|
Args:
|
|
datapipe: DataPipe that needs to set shuffle attribute
|
|
shuffle: Shuffle option (default: ``None`` and no-op to the graph)
|
|
"""
|
|
if shuffle is None:
|
|
return datapipe
|
|
|
|
graph = traverse_dps(datapipe)
|
|
all_pipes = get_all_graph_pipes(graph)
|
|
shufflers = [pipe for pipe in all_pipes if _is_shuffle_datapipe(pipe)]
|
|
if not shufflers and shuffle:
|
|
warnings.warn(
|
|
"`shuffle=True` was set, but the datapipe does not contain a `Shuffler`. Adding one at the end. "
|
|
"Be aware that the default buffer size might not be sufficient for your task."
|
|
)
|
|
datapipe = datapipe.shuffle()
|
|
shufflers = [datapipe, ] # type: ignore[list-item]
|
|
|
|
for shuffler in shufflers:
|
|
shuffler.set_shuffle(shuffle)
|
|
|
|
return datapipe
|
|
|
|
|
|
def apply_shuffle_seed(datapipe: DataPipe, rng: Any) -> DataPipe:
|
|
warnings.warn(
|
|
"`apply_shuffle_seed` is deprecated since 1.12 and will be removed in the future releases."
|
|
"\nPlease use `apply_random_seed` instead."
|
|
)
|
|
return apply_random_seed(datapipe, rng)
|
|
|
|
|
|
def _is_random_datapipe(datapipe: DataPipe) -> bool:
|
|
if hasattr(datapipe, "set_seed") and inspect.ismethod(datapipe.set_seed):
|
|
return True
|
|
return False
|
|
|
|
|
|
def apply_random_seed(datapipe: DataPipe, rng: torch.Generator) -> DataPipe:
|
|
r"""
|
|
Traverse the graph of ``DataPipes`` to find random ``DataPipe`` with an API of ``set_seed``.
|
|
|
|
Then set the random seed based on the provided RNG to those ``DataPipe``.
|
|
|
|
Args:
|
|
datapipe: DataPipe that needs to set randomness
|
|
rng: Random number generator to generate random seeds
|
|
"""
|
|
graph = traverse_dps(datapipe)
|
|
all_pipes = get_all_graph_pipes(graph)
|
|
# Using a set to track id of DataPipe to prevent setting randomness per DataPipe more than once.
|
|
# And, `id` is used in case of unhashable DataPipe
|
|
cache = set()
|
|
random_datapipes = []
|
|
for pipe in all_pipes:
|
|
if id(pipe) in cache:
|
|
continue
|
|
if _is_random_datapipe(pipe):
|
|
random_datapipes.append(pipe)
|
|
cache.add(id(pipe))
|
|
|
|
for pipe in random_datapipes:
|
|
random_seed = int(torch.empty((), dtype=torch.int64).random_(generator=rng).item())
|
|
pipe.set_seed(random_seed)
|
|
|
|
return datapipe
|