ai-content-maker/.venv/Lib/site-packages/torchaudio/datasets/tedlium.py

219 lines
8.5 KiB
Python

import os
from pathlib import Path
from typing import Tuple, Union
import torchaudio
from torch import Tensor
from torch.utils.data import Dataset
from torchaudio._internal import download_url_to_file
from torchaudio.datasets.utils import _extract_tar
_RELEASE_CONFIGS = {
"release1": {
"folder_in_archive": "TEDLIUM_release1",
"url": "http://www.openslr.org/resources/7/TEDLIUM_release1.tar.gz",
"checksum": "30301975fd8c5cac4040c261c0852f57cfa8adbbad2ce78e77e4986957445f27",
"data_path": "",
"subset": "train",
"supported_subsets": ["train", "test", "dev"],
"dict": "TEDLIUM.150K.dic",
},
"release2": {
"folder_in_archive": "TEDLIUM_release2",
"url": "http://www.openslr.org/resources/19/TEDLIUM_release2.tar.gz",
"checksum": "93281b5fcaaae5c88671c9d000b443cb3c7ea3499ad12010b3934ca41a7b9c58",
"data_path": "",
"subset": "train",
"supported_subsets": ["train", "test", "dev"],
"dict": "TEDLIUM.152k.dic",
},
"release3": {
"folder_in_archive": "TEDLIUM_release-3",
"url": "http://www.openslr.org/resources/51/TEDLIUM_release-3.tgz",
"checksum": "ad1e454d14d1ad550bc2564c462d87c7a7ec83d4dc2b9210f22ab4973b9eccdb",
"data_path": "data/",
"subset": "train",
"supported_subsets": ["train", "test", "dev"],
"dict": "TEDLIUM.152k.dic",
},
}
class TEDLIUM(Dataset):
"""*Tedlium* :cite:`rousseau2012tedlium` dataset (releases 1,2 and 3).
Args:
root (str or Path): Path to the directory where the dataset is found or downloaded.
release (str, optional): Release version.
Allowed values are ``"release1"``, ``"release2"`` or ``"release3"``.
(default: ``"release1"``).
subset (str, optional): The subset of dataset to use. Valid options are ``"train"``, ``"dev"``,
and ``"test"``. Defaults to ``"train"``.
download (bool, optional):
Whether to download the dataset if it is not found at root path. (default: ``False``).
audio_ext (str, optional): extension for audio file (default: ``".sph"``)
"""
def __init__(
self,
root: Union[str, Path],
release: str = "release1",
subset: str = "train",
download: bool = False,
audio_ext: str = ".sph",
) -> None:
self._ext_audio = audio_ext
if release in _RELEASE_CONFIGS.keys():
folder_in_archive = _RELEASE_CONFIGS[release]["folder_in_archive"]
url = _RELEASE_CONFIGS[release]["url"]
subset = subset if subset else _RELEASE_CONFIGS[release]["subset"]
else:
# Raise warning
raise RuntimeError(
"The release {} does not match any of the supported tedlium releases{} ".format(
release,
_RELEASE_CONFIGS.keys(),
)
)
if subset not in _RELEASE_CONFIGS[release]["supported_subsets"]:
# Raise warning
raise RuntimeError(
"The subset {} does not match any of the supported tedlium subsets{} ".format(
subset,
_RELEASE_CONFIGS[release]["supported_subsets"],
)
)
# Get string representation of 'root' in case Path object is passed
root = os.fspath(root)
basename = os.path.basename(url)
archive = os.path.join(root, basename)
basename = basename.split(".")[0]
if release == "release3":
if subset == "train":
self._path = os.path.join(root, folder_in_archive, _RELEASE_CONFIGS[release]["data_path"])
else:
self._path = os.path.join(root, folder_in_archive, "legacy", subset)
else:
self._path = os.path.join(root, folder_in_archive, _RELEASE_CONFIGS[release]["data_path"], subset)
if download:
if not os.path.isdir(self._path):
if not os.path.isfile(archive):
checksum = _RELEASE_CONFIGS[release]["checksum"]
download_url_to_file(url, archive, hash_prefix=checksum)
_extract_tar(archive)
else:
if not os.path.exists(self._path):
raise RuntimeError(
f"The path {self._path} doesn't exist. "
"Please check the ``root`` path or set `download=True` to download it"
)
# Create list for all samples
self._filelist = []
stm_path = os.path.join(self._path, "stm")
for file in sorted(os.listdir(stm_path)):
if file.endswith(".stm"):
stm_path = os.path.join(self._path, "stm", file)
with open(stm_path) as f:
l = len(f.readlines())
file = file.replace(".stm", "")
self._filelist.extend((file, line) for line in range(l))
# Create dict path for later read
self._dict_path = os.path.join(root, folder_in_archive, _RELEASE_CONFIGS[release]["dict"])
self._phoneme_dict = None
def _load_tedlium_item(self, fileid: str, line: int, path: str) -> Tuple[Tensor, int, str, int, int, int]:
"""Loads a TEDLIUM dataset sample given a file name and corresponding sentence name.
Args:
fileid (str): File id to identify both text and audio files corresponding to the sample
line (int): Line identifier for the sample inside the text file
path (str): Dataset root path
Returns:
(Tensor, int, str, int, int, int):
``(waveform, sample_rate, transcript, talk_id, speaker_id, identifier)``
"""
transcript_path = os.path.join(path, "stm", fileid)
with open(transcript_path + ".stm") as f:
transcript = f.readlines()[line]
talk_id, _, speaker_id, start_time, end_time, identifier, transcript = transcript.split(" ", 6)
wave_path = os.path.join(path, "sph", fileid)
waveform, sample_rate = self._load_audio(wave_path + self._ext_audio, start_time=start_time, end_time=end_time)
return (waveform, sample_rate, transcript, talk_id, speaker_id, identifier)
def _load_audio(self, path: str, start_time: float, end_time: float, sample_rate: int = 16000) -> [Tensor, int]:
"""Default load function used in TEDLIUM dataset, you can overwrite this function to customize functionality
and load individual sentences from a full ted audio talk file.
Args:
path (str): Path to audio file
start_time (int): Time in seconds where the sample sentence stars
end_time (int): Time in seconds where the sample sentence finishes
sample_rate (float, optional): Sampling rate
Returns:
[Tensor, int]: Audio tensor representation and sample rate
"""
start_time = int(float(start_time) * sample_rate)
end_time = int(float(end_time) * sample_rate)
kwargs = {"frame_offset": start_time, "num_frames": end_time - start_time}
return torchaudio.load(path, **kwargs)
def __getitem__(self, n: int) -> Tuple[Tensor, int, str, int, int, int]:
"""Load the n-th sample from the dataset.
Args:
n (int): The index of the sample to be loaded
Returns:
Tuple of the following items;
Tensor:
Waveform
int:
Sample rate
str:
Transcript
int:
Talk ID
int:
Speaker ID
int:
Identifier
"""
fileid, line = self._filelist[n]
return self._load_tedlium_item(fileid, line, self._path)
def __len__(self) -> int:
"""TEDLIUM dataset custom function overwritting len default behaviour.
Returns:
int: TEDLIUM dataset length
"""
return len(self._filelist)
@property
def phoneme_dict(self):
"""dict[str, tuple[str]]: Phonemes. Mapping from word to tuple of phonemes.
Note that some words have empty phonemes.
"""
# Read phoneme dictionary
if not self._phoneme_dict:
self._phoneme_dict = {}
with open(self._dict_path, "r", encoding="utf-8") as f:
for line in f.readlines():
content = line.strip().split()
self._phoneme_dict[content[0]] = tuple(content[1:]) # content[1:] can be empty list
return self._phoneme_dict.copy()