ai-content-maker/.venv/Lib/site-packages/torchgen/dest/lazy_ir.py

708 lines
28 KiB
Python

import itertools
from abc import ABC
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union
import torchgen.api.dispatcher as dispatcher
from torchgen.api.lazy import (
getValueT,
isValueType,
LazyArgument,
LazyIrProperties,
LazyIrSchema,
tensorListValueT,
)
from torchgen.api.translate import translate
from torchgen.api.types import (
BaseCType,
Binding,
deviceT,
DispatcherSignature,
kernel_signature,
NativeSignature,
OptionalCType,
VectorCType,
)
from torchgen.context import method_with_native_function
from torchgen.dest.lazy_ts_lowering import ts_lowering_body
from torchgen.model import (
Argument,
BackendIndex,
BackendMetadata,
BaseTy,
BaseType,
FunctionSchema,
ListType,
NativeFunction,
NativeFunctionsGroup,
)
def node_ctor_arg_rvalue_string(arg: LazyArgument) -> str:
"""
Given a LazyArgument,
generate a c++ string for materializing an rvalue of that arg for passing into
a lazy Node constructor.
"""
# TODO: Matching on CType seems wrong; should be matching on Type
if isValueType(arg.lazy_type):
if isinstance(arg.lazy_type, BaseCType):
if arg.is_wrapped_scalar:
return f"node_{arg.name}"
elif arg.lazy_type.type is tensorListValueT:
return f"lazy_{arg.name}_tensorlist"
elif arg.is_symint_or_list:
return f"GetSymIntValue({arg.name})"
return f"lazy_{arg.name}->GetIrValue()"
elif isinstance(arg.lazy_type, OptionalCType):
if arg.is_symint_or_list:
# TODO: I don't understand when you should put lazy_ in the name
# or not
return f"{arg.name} ? c10::make_optional(GetSymIntValue(*{arg.name})) : c10::nullopt"
elif arg.is_wrapped_scalar:
return f"node_{arg.name}"
return (
f"lazy_{arg.name} ? "
f"c10::make_optional(lazy_{arg.name}->GetIrValue()) : "
"c10::nullopt"
)
else:
raise AssertionError(
f"TODO not sure if there are other valid types to handle here ({arg.lazy_type})"
)
else:
# NB: this is here because right now we aren't treating SymInt[] as a
# value type; when we do this needs to move above
# NB: we cannot test arg.lazy_type as we've already specified it is an
# int64_t and so we cannot distinguish between SymInt and int64_t
if isinstance(arg.orig_type, ListType) and arg.orig_type.elem == BaseType(
BaseTy.SymInt
):
if arg.symint:
return f"GetSymIntArrayRefValue({arg.name})"
else:
return f"std::vector<int64_t>({arg.name}.begin(), {arg.name}.end())"
elif isinstance(arg.lazy_type, VectorCType) and isinstance(
arg.lazy_type.elem, BaseCType
):
return f"std::vector<{arg.lazy_type.elem.type}>({arg.name}.begin(), {arg.name}.end())"
elif (
isinstance(arg.lazy_type, OptionalCType)
and isinstance(arg.lazy_type.elem, VectorCType)
and isinstance(arg.lazy_type.elem.elem, BaseCType)
):
return f"torch::lazy::ToOptionalVector<{arg.lazy_type.elem.elem.type}>({arg.name})"
else:
return f"{arg.name}"
def node_ctor_inputs(schema: LazyIrSchema) -> str:
"""
Produce a formatted string with the arguments as passed into the constructor of a node class.
"""
node_ctor_values = [
node_ctor_arg_rvalue_string(arg) for arg in schema.filtered_args()
]
return ", ".join(node_ctor_values)
def gen_fallback_code(
schema: LazyIrSchema,
sig: Union[DispatcherSignature, NativeSignature],
overload_name: str,
) -> str:
"""
Generate code that falls back to eager conditioned on a predicate
"""
dispatcher_sig = DispatcherSignature.from_schema(schema.func)
exprs = translate(sig.arguments(), dispatcher_sig.arguments())
fallback_args = ",\n ".join([a.expr for a in exprs])
if len(overload_name):
aten_op_str = f"ATEN_OP2({schema.aten_name}, {overload_name})"
else:
aten_op_str = f"ATEN_OP({schema.aten_name})"
return f"""
if (force_eager_fallback({aten_symbol(schema)})) {{
return at::native::call_fallback_fn_symint<&ltc_eager_fallback, {aten_op_str}>::call(
{fallback_args}
);
}}
"""
def aten_symbol(schema: LazyIrSchema) -> str:
missing_interned_strings = {
"sigmoid_backward",
}
if schema.aten_name in missing_interned_strings:
return f'c10::Symbol::fromQualString("aten::{schema.aten_name}")'
if not schema.aten_name.startswith("at::"):
return f"at::aten::{schema.aten_name}"
else:
return schema.aten_name
# converts all tensor-like arguments to meta tensors. Returns:
# (1) a string containing all of the logic that does the conversions.
# (2) a context, to be used by translate(), with all of the relevant bindings.
def convert_to_meta_tensors(sig: DispatcherSignature) -> Tuple[str, List[Binding]]:
context: List[Binding] = []
unwrapped_tensor_args: List[str] = []
for arg in sig.arguments():
if isinstance(arg.argument, Argument) and arg.argument.type.is_tensor_like():
unwrapped_name = f"{arg.name}_meta"
unwrapped_tensor_args.append(
f"auto {unwrapped_name} = to_meta({arg.name});"
)
context.append(arg.with_name(unwrapped_name))
else:
context.append(arg)
unwrap_tensor_args_str = "\n ".join(unwrapped_tensor_args)
return unwrap_tensor_args_str, context
@dataclass(frozen=True)
class GenLazyIR(ABC):
backend_index: BackendIndex
backend_name: str
node_base: str
use_lazy_shape: bool
@method_with_native_function
def __call__(self, f: Union[NativeFunctionsGroup, NativeFunction]) -> List[str]:
func = f.functional.func if isinstance(f, NativeFunctionsGroup) else f.func
metadata = self.backend_index.get_kernel(
f.functional if isinstance(f, NativeFunctionsGroup) else f
)
schema = LazyIrSchema(
func, symint=metadata is not None and metadata.supports_symint()
)
return self.gen(schema)
# there is no lowering functionality generated unless this IR base class is subclassed and
# implemented as a backend-specific node
def lowering_function(self, schema: LazyIrSchema) -> str:
return ""
def create_function(self, schema: LazyIrSchema, node_ctor_args: str) -> str:
return ""
def can_be_reused_function(self, schema: LazyIrSchema, node_ctor_args: str) -> str:
return f"""bool CanBeReused({node_ctor_args}) const {{
return false;
}}"""
def node_base_ctor_call(self, schema: LazyIrSchema) -> str:
value_args = schema.filtered_args(values=True, scalars=False)
# backends can customize the way the node base class constructor is called,
# as long as all of its arguments can be generated from information available from the schema
base_ctor_value_args_list = []
for arg in value_args:
if isinstance(arg.lazy_type, (BaseCType, VectorCType)):
base_ctor_value_args_list.append(f"{arg.name}")
elif isinstance(arg.lazy_type, OptionalCType):
base_ctor_value_args_list.append(f"{arg.name}.value_or(kNullValue)")
else:
raise AssertionError(
f"Unsupported type ({arg.lazy_type}) - add support if necessary"
)
base_ctor_value_args = ", ".join(base_ctor_value_args_list)
scalar_args = schema.filtered_args(values=False, scalars=True)
# Shape construction.
# Conditionally build shape depending on specified shape property
if schema.properties.ShapePrecompute:
shape_ctor_arg = "std::move(shapes),"
elif schema.properties.ShapeCompute:
shape_args = [a.name for a in value_args]
shape_args.extend(a.name for a in scalar_args)
shape_ctor_arg = f"compute_shape_{schema.name}({', '.join(shape_args)}),"
elif schema.properties.ShapeCache:
shape_args = [f"operand({i})" for i in range(len(value_args))]
shape_args.extend(a.name for a in scalar_args)
shape_ctor_arg = f"[&](){{ return compute_shape_{schema.name}({', '.join(shape_args)})[0]; }},"
else:
shape_ctor_arg = ""
scalar_hashes = ", ".join(f"{a.name}" for a in scalar_args)
return f"""{self.node_base}(
{schema.node_name}::ClassOpKind(),
OpList{{{base_ctor_value_args}}},
{shape_ctor_arg}
/* num_outputs */ {len(schema.returns)},
torch::lazy::MHash({scalar_hashes}))"""
def gen(self, schema: LazyIrSchema) -> List[str]:
opkind = schema.opkind or aten_symbol(schema)
# for now, we just want one IR class decl and soon after also the method defs
# and we use the functional version not out/inplace.
all_args = schema.filtered_args()
value_args = schema.filtered_args(values=True, scalars=False)
scalar_args = schema.filtered_args(values=False, scalars=True)
ctor_args = [f"const {i.lazy_type.cpp_type()}& {i.name}" for i in all_args]
reuse_ctor_args = ", ".join(ctor_args)
if self.use_lazy_shape and schema.properties.ShapePrecompute:
ctor_args.append("std::vector<torch::lazy::Shape>&& shapes")
node_ctor_args = ", ".join(ctor_args)
scalar_initializers = ",\n ".join(
[
# This code is just special casing the mapping from string_view -> strings
f"{a.name}({a.name}.has_value() ? c10::make_optional(std::string(*{a.name})) : c10::nullopt)"
if a.lazy_type.cpp_type() == "c10::optional<c10::string_view>"
else f"{a.name}({a.name})"
for a in scalar_args
]
)
if len(scalar_initializers):
scalar_initializers = f",\n {scalar_initializers}"
scalar_decls = "\n ".join(
[
f"std::string {a.name};"
if a.lazy_type.cpp_type() == "c10::string_view"
else f"c10::optional<std::string> {a.name};"
if a.lazy_type.cpp_type() == "c10::optional<c10::string_view>"
else f"{a.lazy_type.cpp_type()} {a.name};"
for a in scalar_args
]
)
optional_values = [
arg.name
for arg in schema.filtered_args(values=True, scalars=False)
if isinstance(arg.lazy_type, OptionalCType)
]
has_optional_decls = "\n ".join(
[f"bool has_{value}: 1;" for value in optional_values]
)
has_optional_defs = "\n ".join(
[f"has_{value} = !!{value};" for value in optional_values]
)
members_to_string = []
for arg in scalar_args:
if isinstance(arg.lazy_type, OptionalCType):
value = f"{arg.name}.value()"
if arg.is_generator:
value = '"torch.Generator()"'
members_to_string.append(
f"""if ({arg.name}.has_value()) {{
ss << ", {arg.name}=" << {value};
}} else {{
ss << ", {arg.name}=null";
}}"""
)
else:
members_to_string.append(f'ss << ", {arg.name}=" << {arg.name};')
members_to_string_str = "\n ".join(members_to_string)
return [
f"""\
class {schema.node_name} : public {self.node_base} {{
public:
static torch::lazy::OpKind ClassOpKind() {{
return torch::lazy::OpKind({opkind});
}}
{schema.node_name}({node_ctor_args})
: {self.node_base_ctor_call(schema)}{scalar_initializers}
{{
{has_optional_defs}
}}
std::string ToString() const override {{
std::stringstream ss;
ss << {self.node_base}::ToString();
{members_to_string_str}
return ss.str();
}}
{self.create_function(schema, reuse_ctor_args)}
{self.can_be_reused_function(schema, reuse_ctor_args)}
{self.lowering_function(schema)}
{scalar_decls}
{has_optional_decls}
}};
""",
]
@dataclass(frozen=True)
class GenTSLazyIR(GenLazyIR):
def lowering_function(self, schema: LazyIrSchema) -> str:
signature = """
torch::lazy::TSOpVector Lower(
std::shared_ptr<torch::jit::GraphFunction> function,
torch::lazy::TSLoweringContext* loctx) const override"""
if schema.properties.LowerDeclOnly:
return f"{signature};"
elif schema.properties.Lower:
return f"""{signature} {{
{ts_lowering_body(schema)}
}}
"""
else:
return ""
def create_function(self, schema: LazyIrSchema, node_ctor_args: str) -> str:
signature = f"static NodePtr Create({node_ctor_args})"
if schema.properties.CreateFnDeclOnly:
return f"{signature};"
elif not schema.properties.CreateFn:
return ""
return f"""{signature} {{
return ReuseOrMakeNode<{schema.node_name}>(data);
}}"""
def can_be_reused_function(self, schema: LazyIrSchema, node_ctor_args: str) -> str:
signature = f"bool CanBeReused({node_ctor_args}) const"
if schema.properties.CanBeReusedDeclOnly:
return f"{signature};"
elif not schema.properties.CanBeReused:
return ""
value_comparison = []
for arg in itertools.chain(schema.positional_values, schema.keyword_values):
if isinstance(arg.lazy_type, OptionalCType):
value_comparison.append(
f"nullable_operand(i++) == {arg.name}.value_or(kNullValue)"
)
else:
value_comparison.append(f"operand(i++) == {arg.name}")
for arg in itertools.chain(schema.positional_scalars, schema.keyword_scalars):
if isinstance(arg.lazy_type, OptionalCType):
value_comparison.append(
f"((!this->{arg.name}&&!{arg.name}) || (this->{arg.name}&&{arg.name} && *(this->{arg.name}) == *{arg.name}))"
)
else:
value_comparison.append(f"this->{arg.name} == {arg.name}")
value_comparison_str = " &&\n ".join(value_comparison)
return f"""{signature} {{
size_t i = 0;
return ({value_comparison_str});
}}"""
@dataclass(frozen=True)
class GenLazyNativeFuncDefinition:
class_method_name: str
backend_index: BackendIndex
tensor_class: str
gen_forced_fallback_code: bool
backend_namespace: str
get_tensorlist: str
get_tensor_or_wrap_number: str
try_get_tensor: str
metrics_counter: str
create_tensor: str
create_from_first_tensor: bool
create_aten_from_ltc_tensor: str
tuple_aten_from_ltc_tensors: str
lazy_tensor_ptr: str
get_device_fn: str
def lazy_tensor_decls(self, func: NativeFunction, schema: LazyIrSchema) -> str:
value_args = schema.filtered_args(values=True, scalars=False)
# Generates lazy_{name} variables for LazyTensors wrapping input tensors
lazy_tensor_decls: List[str] = []
for arg in value_args:
if arg.is_wrapped_scalar:
if isinstance(arg.lazy_type, OptionalCType):
lazy_tensor_decls.append(
f"""auto node_{arg.name} = {arg.name} ?
c10::make_optional(torch::lazy::LazyGraphExecutor::Get()->
GetIrValueForScalarFromCodegen(*{arg.name}, *common_device)):
c10::nullopt;"""
)
else:
lazy_tensor_decls.append(
f"""auto node_{arg.name} = torch::lazy::LazyGraphExecutor::Get()->
GetIrValueForScalarFromCodegen({arg.name}, *common_device);"""
)
elif arg.is_symint_or_list:
continue # values are extracted in isValueType
elif isinstance(arg.lazy_type, BaseCType):
if arg.lazy_type.type is tensorListValueT:
lazy_tensor_decls.append(
f"auto lazy_{arg.name}_tensorlist = "
f"{self.backend_namespace}::{self.get_tensorlist}({arg.name});"
)
else:
lazy_tensor_decls.append(
f"{self.lazy_tensor_ptr} lazy_{arg.name} = "
f"{self.backend_namespace}::{self.get_tensor_or_wrap_number}({arg.name}, *common_device);"
)
elif isinstance(arg.lazy_type, OptionalCType):
assert arg.lazy_type.elem == BaseCType(getValueT()), arg.lazy_type.elem
# TODO(alanwaketan): Maybe we want to apply GetLtcTensorOrCreateForWrappedNumber here, but hold it
# until we encounter a real world example.
lazy_tensor_decls.append(
f"{self.lazy_tensor_ptr} lazy_{arg.name} = "
f"{self.backend_namespace}::{self.try_get_tensor}({arg.name}.value_or(at::Tensor()));"
)
else:
raise AssertionError(
f"TODO not sure if there are other valid types to handle here ({arg.lazy_type})"
)
return ("\n ").join(lazy_tensor_decls)
def force_eager_fallback(
self,
func: NativeFunction,
schema: LazyIrSchema,
metadata: BackendMetadata,
sig: Union[DispatcherSignature, NativeSignature],
) -> str:
if self.gen_forced_fallback_code:
return gen_fallback_code(
schema, sig, overload_name=func.func.name.overload_name
)
return ""
def metrics(self, func: NativeFunction, schema: LazyIrSchema) -> str:
return f"{self.metrics_counter};"
def get_device(self, func: NativeFunction, schema: LazyIrSchema) -> str:
value_args = schema.filtered_args(values=True, scalars=False)
scalar_args = schema.filtered_args(values=False, scalars=True)
value_types_names = [f"{a.name}" for a in value_args if not a.is_wrapped_scalar]
optional_device = OptionalCType(BaseCType(deviceT))
optional_devices = [
a.name for a in scalar_args if a.lazy_type == optional_device
]
assert (
len(value_types_names) > 0 or len(optional_devices) > 0
), "Expected at least one Value or Device type"
get_device_str = (
f"{self.get_device_fn}({', '.join(value_types_names + optional_devices)})"
)
return f"""auto common_device = {get_device_str};
TORCH_INTERNAL_ASSERT(common_device);
"""
def shape_inference(self, func: NativeFunction, schema: LazyIrSchema) -> str:
metadata = self.backend_index.get_kernel(func)
assert metadata is not None
all_args = schema.filtered_args()
returns_length = len(schema.returns)
# call the meta kernel if it exists, to compute output shape/dtype for our IR
# Note [Generated LTC Shape Functions]
# LTC uses meta tensors from core to do shape inference when possible, and otherwise
# we generate a shape function declaration that needs to be manually implemented.
# How do we detect which ops are eligible to use meta tensors?
# In general we should be able to use meta tensors not just on structured operators,
# but also on composite operators that are implemented in terms of structured kernels.
# We don't currently have a way of knowing at codegen time which ops are implemented that way.
# This is the case for all view and view_copy operators however, so we're going to
# use them specifically for all of the view_copy ops (instead of manually writing shape rules for all of them).
is_view_copy_op = "view_copy" in func.tags
is_structured = func.structured or func.structured_delegate is not None
if is_structured or is_view_copy_op:
meta_out = """
std::vector<torch::lazy::Shape> shapes{torch::lazy::Shape(out_meta.scalar_type(), out_meta.sizes().vec())};"""
if returns_length > 1:
def this_shape(i: int) -> str:
return f"torch::lazy::Shape(std::get<{i}>(out_meta).scalar_type(), std::get<{i}>(out_meta).sizes().vec())"
shapes_str = ",".join([this_shape(i) for i in range(returns_length)])
meta_out = "std::vector<torch::lazy::Shape> shapes{" + shapes_str + "};"
# Convert tensor args to the meta device and call it.
# (We can't pass in the input tensors directly, because they are "functional wrappers".
# If any of the meta kernels call a tensor op and redispatch, we don't want to hit the functionalize kernels.)
# Even at::meta:: functions might redispatch, e.g. if they call into view ops.
dispatcher_sig = DispatcherSignature.from_schema(func.func)
meta_conversion_str, meta_call_ctx = convert_to_meta_tensors(dispatcher_sig)
meta_call_args = [
e.expr
for e in translate(
meta_call_ctx, dispatcher_sig.arguments(), method=False
)
]
if is_view_copy_op:
# view_copy ops always have a CompositeExplicitAutogradNonFunctional kernel
assert func.has_composite_explicit_autograd_non_functional_kernel
dispatch_ns = "compositeexplicitautogradnonfunctional"
else:
dispatch_ns = "meta"
aten_name = schema.aten_name
# TODO: this is trolling
if func.func.has_symint() and metadata.supports_symint():
aten_name += "_symint"
shape_str = f"""\
{meta_conversion_str}
auto out_meta = at::{dispatch_ns}::{aten_name}({', '.join(meta_call_args)});
{meta_out}"""
else:
shape_sig = ComputeShapeSignature(
metadata.kernel, func, symint=metadata.supports_symint()
)
shape_str = f"""
auto shapes = {shape_sig.shape_call};"""
shape_str += f"""
TORCH_INTERNAL_ASSERT(shapes.size() == {returns_length});"""
# Calculating which dimensions are symbolic
func_schema_str = "aten::" + str(func.func)
shape_str += f"""
if(torch::lazy::symbolicShapeEnabled()){{
std::vector<torch::jit::IValue> inputs = {{ {', '.join(str(a.name) for a in all_args)} }};
const char* schema_str = "{func_schema_str}";
applySymbolicShapesOnLT(schema_str, inputs, shapes);
}}
"""
return shape_str
def build_ir_node(self, func: NativeFunction, schema: LazyIrSchema) -> str:
node_ctor_input_str = node_ctor_inputs(schema)
return f"""torch::lazy::NodePtr node = torch::lazy::ReuseNode<{schema.node_name}>({node_ctor_input_str});
if (!node) {{
{self.shape_inference(func, schema)}
node = torch::lazy::MakeNode<{schema.node_name}>({node_ctor_input_str}, std::move(shapes));
CacheNode(node);
}}
"""
def create_lazy_tensor(self, first_tensor_name: Optional[str] = None) -> str:
# xla uses an instance method for tensor creation, for the time being
if self.create_from_first_tensor:
# TODO(whc) remove this if XLA switches to using static method for creation
assert (
first_tensor_name is not None
), "Requires first tensor to create lazy tensor"
return f"{first_tensor_name}.{self.create_tensor}"
return f"{self.backend_namespace}::{self.create_tensor}"
def return_aten_tensor(self, func: NativeFunction, schema: LazyIrSchema) -> str:
returns_length = len(schema.returns)
value_args = schema.filtered_args(values=True, scalars=False)
value_types_names = [f"{a.name}" for a in value_args if not a.is_wrapped_scalar]
first_tensor_name = value_types_names[0] if len(value_types_names) > 0 else None
bridge_str = f"""auto result = {self.create_aten_from_ltc_tensor}(
{self.create_lazy_tensor(first_tensor_name)}(std::move(node), *common_device));"""
if returns_length > 1:
assert (
len(value_types_names) > 0
), "Code below assumes there is at least one tensor arg"
bridge_str = f"""std::vector<{self.lazy_tensor_ptr}> lazy_tensors;
for (int i = 0; i < {returns_length}; i++) {{
lazy_tensors.push_back({self.create_lazy_tensor(first_tensor_name)}({getValueT()}(node, i), *common_device));
}}
auto result = {self.tuple_aten_from_ltc_tensors}<{returns_length}>(lazy_tensors);"""
if schema.name.name.inplace or func.func.is_out_fn():
assert returns_length == 1, (
"We assumed there was no such case where an op is an in-place variant "
f"and has tuple outputs, but got tuple of len {returns_length}."
)
bridge_str = f"""lazy_{first_tensor_name}->SetInPlaceIrValue(node);
auto& result = {first_tensor_name};"""
bridge_str += """
return result;"""
return bridge_str
@method_with_native_function
def __call__(self, func: NativeFunction) -> List[str]:
sig = kernel_signature(func, self.backend_index)
metadata = self.backend_index.get_kernel(func)
assert metadata is not None
schema = LazyIrSchema(func.func, symint=metadata.supports_symint())
return [
f"""\
{sig.decl(name=f"{self.class_method_name}::{metadata.kernel}")} {{
{self.force_eager_fallback(func, schema, metadata, sig)}
{self.metrics(func, schema)}
{self.get_device(func, schema)}
{self.lazy_tensor_decls(func, schema)}
{self.build_ir_node(func, schema)}
{self.return_aten_tensor(func, schema)}
}}\n
"""
]
class ComputeShapeSignature:
"""
Here we use the base name as the suffix of the signature to avoid generating for in-place variants.
"""
def __init__(self, kernel_name: str, f: NativeFunction, *, symint: bool):
self.__schema = LazyIrSchema(f.func, symint=symint)
self.__dispatch_args = ", ".join(
[a.decl() for a in dispatcher.arguments(f.func, symint=symint)]
)
self.__call_args = ", ".join(
[f"{arg.name}" for arg in self.__schema.filtered_args(generator=True)]
)
self.__kernel_name = kernel_name
def __decl_suffix(self) -> str:
return f"{self.__kernel_name}({self.__dispatch_args})"
def __call_suffix(self) -> str:
return f"{self.__kernel_name}({self.__call_args})"
@property
def shape_decl(self) -> str:
return f"TORCH_API std::vector<torch::lazy::Shape> compute_shape_{self.__decl_suffix()}"
@property
def shape_call(self) -> str:
return f"torch::lazy::compute_shape_{self.__call_suffix()}"
@dataclass(frozen=True)
class GenLazyShapeInferenceDefinition:
backend_index: BackendIndex
tensor_class: str
@method_with_native_function
def __call__(self, f: NativeFunction) -> List[str]:
sig = kernel_signature(f, self.backend_index)
metadata = self.backend_index.get_kernel(f)
assert metadata is not None
# See Note [Generated LTC Shape Functions]
is_view_copy_op = "view_copy" in f.tags
is_structured = f.structured or f.structured_delegate is not None
if is_structured or is_view_copy_op:
return []
else:
shape_sig = ComputeShapeSignature(
metadata.kernel, f, symint=metadata.supports_symint()
)
return ["\n".join([f"{shape_sig.shape_decl};"])]
def generate_non_native_lazy_ir_nodes(
non_native: List[Dict[str, Any]], gen_lazy_ir: GenLazyIR
) -> List[str]:
"""Generate the non-native lazy IR node classes"""
nodes = []
for op in non_native:
# Set default properties for Non-Native IRs
properties = LazyIrProperties("ShapeCache", "CanBeReused", "LowerDeclOnly")
for p in op.get("properties", []):
setattr(properties, p, True)
# non-native is assumed to want symint bindings if you wrote symint
schema = LazyIrSchema(FunctionSchema.parse(op["func"]), properties, symint=True)
schema.opkind = op.get("opkind")
nodes.append(gen_lazy_ir.gen(schema)[0])
return nodes