ai-content-maker/.venv/Lib/site-packages/torchgen/dest/lazy_ts_lowering.py

49 lines
1.8 KiB
Python

from torchgen.api.lazy import LazyArgument, LazyIrSchema
from torchgen.api.types import OptionalCType
def ts_lowering_body(schema: LazyIrSchema) -> str:
# for now, we just want one IR class decl and soon after also the method defs
# and we use the functional version not out/inplace.
emplace_arguments = []
def get_value(arg: LazyArgument) -> str:
if isinstance(arg.lazy_type, OptionalCType):
return f"has_{arg.name} ? loctx->GetOutputOp(operand(i++)) : nullptr"
return "loctx->GetOutputOp(operand(i++))"
for arg in schema.positional_args:
if arg.is_lazy_value:
emplace_arguments.append(get_value(arg))
continue
emplace_arguments.append(f'"{arg.name}", {arg.name}')
emplace_arguments_str = "\n ".join(
[f"arguments.emplace_back({a});" for a in emplace_arguments]
)
emplace_kwarg_values = [
f'"{arg.name}", {get_value(arg)}' for arg in schema.keyword_values
]
emplace_kwarg_scalars = [
f'"{arg.name}", {arg.name}' for arg in schema.keyword_scalars
]
emplace_kwarguments = "\n ".join(
[
f"kwarguments.emplace_back({a});"
for a in emplace_kwarg_values + emplace_kwarg_scalars
]
)
return f"""\
std::vector<torch::jit::NamedValue> arguments;
std::vector<torch::jit::NamedValue> kwarguments;
arguments.reserve({len(emplace_arguments)});
kwarguments.reserve({len(emplace_kwarg_values + emplace_kwarg_scalars)});
size_t i = 0;
{emplace_arguments_str}
{emplace_kwarguments}
torch::lazy::TSOpVector {schema.aten_name}_out = torch::lazy::LowerTSBuiltin(function, op().op, arguments, kwarguments);
TORCH_CHECK_EQ({schema.aten_name}_out.size(), {len(schema.returns)});
return {schema.aten_name}_out;
"""