162 lines
6.0 KiB
Python
162 lines
6.0 KiB
Python
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
import time
|
|
import warnings
|
|
from dataclasses import dataclass, field
|
|
from enum import Enum
|
|
from typing import List, Optional, Union
|
|
|
|
import torch
|
|
from filelock import FileLock
|
|
from torch.utils.data import Dataset
|
|
|
|
from ...tokenization_utils_base import PreTrainedTokenizerBase
|
|
from ...utils import logging
|
|
from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors
|
|
from ..processors.utils import InputFeatures
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
@dataclass
|
|
class GlueDataTrainingArguments:
|
|
"""
|
|
Arguments pertaining to what data we are going to input our model for training and eval.
|
|
|
|
Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify them on the command
|
|
line.
|
|
"""
|
|
|
|
task_name: str = field(metadata={"help": "The name of the task to train on: " + ", ".join(glue_processors.keys())})
|
|
data_dir: str = field(
|
|
metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."}
|
|
)
|
|
max_seq_length: int = field(
|
|
default=128,
|
|
metadata={
|
|
"help": (
|
|
"The maximum total input sequence length after tokenization. Sequences longer "
|
|
"than this will be truncated, sequences shorter will be padded."
|
|
)
|
|
},
|
|
)
|
|
overwrite_cache: bool = field(
|
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
|
)
|
|
|
|
def __post_init__(self):
|
|
self.task_name = self.task_name.lower()
|
|
|
|
|
|
class Split(Enum):
|
|
train = "train"
|
|
dev = "dev"
|
|
test = "test"
|
|
|
|
|
|
class GlueDataset(Dataset):
|
|
"""
|
|
This will be superseded by a framework-agnostic approach soon.
|
|
"""
|
|
|
|
args: GlueDataTrainingArguments
|
|
output_mode: str
|
|
features: List[InputFeatures]
|
|
|
|
def __init__(
|
|
self,
|
|
args: GlueDataTrainingArguments,
|
|
tokenizer: PreTrainedTokenizerBase,
|
|
limit_length: Optional[int] = None,
|
|
mode: Union[str, Split] = Split.train,
|
|
cache_dir: Optional[str] = None,
|
|
):
|
|
warnings.warn(
|
|
"This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets "
|
|
"library. You can have a look at this example script for pointers: "
|
|
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py",
|
|
FutureWarning,
|
|
)
|
|
self.args = args
|
|
self.processor = glue_processors[args.task_name]()
|
|
self.output_mode = glue_output_modes[args.task_name]
|
|
if isinstance(mode, str):
|
|
try:
|
|
mode = Split[mode]
|
|
except KeyError:
|
|
raise KeyError("mode is not a valid split name")
|
|
# Load data features from cache or dataset file
|
|
cached_features_file = os.path.join(
|
|
cache_dir if cache_dir is not None else args.data_dir,
|
|
f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}",
|
|
)
|
|
label_list = self.processor.get_labels()
|
|
if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in (
|
|
"RobertaTokenizer",
|
|
"RobertaTokenizerFast",
|
|
"XLMRobertaTokenizer",
|
|
"BartTokenizer",
|
|
"BartTokenizerFast",
|
|
):
|
|
# HACK(label indices are swapped in RoBERTa pretrained model)
|
|
label_list[1], label_list[2] = label_list[2], label_list[1]
|
|
self.label_list = label_list
|
|
|
|
# Make sure only the first process in distributed training processes the dataset,
|
|
# and the others will use the cache.
|
|
lock_path = cached_features_file + ".lock"
|
|
with FileLock(lock_path):
|
|
if os.path.exists(cached_features_file) and not args.overwrite_cache:
|
|
start = time.time()
|
|
self.features = torch.load(cached_features_file)
|
|
logger.info(
|
|
f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start
|
|
)
|
|
else:
|
|
logger.info(f"Creating features from dataset file at {args.data_dir}")
|
|
|
|
if mode == Split.dev:
|
|
examples = self.processor.get_dev_examples(args.data_dir)
|
|
elif mode == Split.test:
|
|
examples = self.processor.get_test_examples(args.data_dir)
|
|
else:
|
|
examples = self.processor.get_train_examples(args.data_dir)
|
|
if limit_length is not None:
|
|
examples = examples[:limit_length]
|
|
self.features = glue_convert_examples_to_features(
|
|
examples,
|
|
tokenizer,
|
|
max_length=args.max_seq_length,
|
|
label_list=label_list,
|
|
output_mode=self.output_mode,
|
|
)
|
|
start = time.time()
|
|
torch.save(self.features, cached_features_file)
|
|
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
|
|
logger.info(
|
|
f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]"
|
|
)
|
|
|
|
def __len__(self):
|
|
return len(self.features)
|
|
|
|
def __getitem__(self, i) -> InputFeatures:
|
|
return self.features[i]
|
|
|
|
def get_labels(self):
|
|
return self.label_list
|