1006 lines
48 KiB
Python
1006 lines
48 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 The HuggingFace Inc. team
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from abc import ABC, abstractmethod
|
|
from collections import UserDict
|
|
from typing import Dict, List, Optional, Tuple, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from ..utils import add_start_docstrings
|
|
from .beam_constraints import Constraint, ConstraintListState
|
|
|
|
|
|
PROCESS_INPUTS_DOCSTRING = r"""
|
|
Args:
|
|
input_ids (`torch.LongTensor` of shape `(batch_size * num_beams, sequence_length)`):
|
|
Indices of input sequence tokens in the vocabulary.
|
|
|
|
Indices can be obtained using any class inheriting from [`PreTrainedTokenizer`]. See
|
|
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
[What are input IDs?](../glossary#input-ids)
|
|
next_scores (`torch.FloatTensor` of shape `(batch_size, 2 * num_beams)`):
|
|
Current scores of the top `2 * num_beams` non-finished beam hypotheses.
|
|
next_tokens (`torch.LongTensor` of shape `(batch_size, 2 * num_beams)`):
|
|
`input_ids` of the tokens corresponding to the top `2 * num_beams` non-finished beam hypotheses.
|
|
next_indices (`torch.LongTensor` of shape `(batch_size, 2 * num_beams)`):
|
|
Beam indices indicating to which beam hypothesis the `next_tokens` correspond.
|
|
pad_token_id (`int`, *optional*):
|
|
The id of the *padding* token.
|
|
eos_token_id (`Union[int, List[int]]`, *optional*):
|
|
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
|
|
beam_indices (`torch.LongTensor`, *optional*):
|
|
Beam indices indicating to which beam hypothesis each token correspond.
|
|
group_index (`int`, *optional*):
|
|
The index of the group of beams. Used with [`~PreTrainedModel.group_beam_search`].
|
|
|
|
Return:
|
|
`UserDict`: A dictionary composed of the fields as defined above:
|
|
|
|
- **next_beam_scores** (`torch.FloatTensor` of shape `(batch_size * num_beams)`) -- Updated scores of all
|
|
non-finished beams.
|
|
- **next_beam_tokens** (`torch.FloatTensor` of shape `(batch_size * num_beams)`) -- Next tokens to be added
|
|
to the non-finished beam_hypotheses.
|
|
- **next_beam_indices** (`torch.FloatTensor` of shape `(batch_size * num_beams)`) -- Beam indices
|
|
indicating to which beam the next tokens shall be added.
|
|
|
|
"""
|
|
|
|
FINALIZE_INPUTS_DOCSTRING = r"""
|
|
Args:
|
|
input_ids (`torch.LongTensor` of shape `(batch_size * num_beams, sequence_length)`):
|
|
Indices of input sequence tokens in the vocabulary.
|
|
|
|
Indices can be obtained using any class inheriting from [`PreTrainedTokenizer`]. See
|
|
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
[What are input IDs?](../glossary#input-ids)
|
|
final_beam_scores (`torch.FloatTensor` of shape `(batch_size * num_beams)`):
|
|
The final scores of all non-finished beams.
|
|
final_beam_tokens (`torch.FloatTensor` of shape `(batch_size * num_beams)`):
|
|
The last tokens to be added to the non-finished beam_hypotheses.
|
|
final_beam_indices (`torch.FloatTensor` of shape `(batch_size * num_beams)`):
|
|
The beam indices indicating to which beam the `final_beam_tokens` shall be added.
|
|
pad_token_id (`int`, *optional*):
|
|
The id of the *padding* token.
|
|
eos_token_id (`Union[int, List[int]]`, *optional*):
|
|
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
|
|
|
|
Return:
|
|
`torch.LongTensor` of shape `(batch_size * num_return_sequences, sequence_length)`: The generated sequences.
|
|
The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early
|
|
due to the `eos_token_id`.
|
|
|
|
"""
|
|
|
|
|
|
class BeamScorer(ABC):
|
|
"""
|
|
Abstract base class for all beam scorers that are used for [`~PreTrainedModel.beam_search`] and
|
|
[`~PreTrainedModel.beam_sample`].
|
|
"""
|
|
|
|
@abstractmethod
|
|
@add_start_docstrings(PROCESS_INPUTS_DOCSTRING)
|
|
def process(
|
|
self,
|
|
input_ids: torch.LongTensor,
|
|
next_scores: torch.FloatTensor,
|
|
next_tokens: torch.LongTensor,
|
|
next_indices: torch.LongTensor,
|
|
**kwargs,
|
|
) -> Tuple[torch.Tensor]:
|
|
raise NotImplementedError("This is an abstract method.")
|
|
|
|
@abstractmethod
|
|
@add_start_docstrings(FINALIZE_INPUTS_DOCSTRING)
|
|
def finalize(
|
|
self,
|
|
input_ids: torch.LongTensor,
|
|
next_scores: torch.FloatTensor,
|
|
next_tokens: torch.LongTensor,
|
|
next_indices: torch.LongTensor,
|
|
max_length: int,
|
|
**kwargs,
|
|
) -> torch.LongTensor:
|
|
raise NotImplementedError("This is an abstract method.")
|
|
|
|
|
|
class BeamSearchScorer(BeamScorer):
|
|
r"""
|
|
[`BeamScorer`] implementing standard beam search decoding.
|
|
|
|
Adapted in part from [Facebook's XLM beam search
|
|
code](https://github.com/facebookresearch/XLM/blob/9e6f6814d17be4fe5b15f2e6c43eb2b2d76daeb4/src/model/transformer.py#L529).
|
|
|
|
Reference for the diverse beam search algorithm and implementation [Ashwin Kalyan's DBS
|
|
implementation](https://github.com/ashwinkalyan/dbs/blob/master/dbs/beam_utils.lua)
|
|
|
|
Args:
|
|
batch_size (`int`):
|
|
Batch Size of `input_ids` for which standard beam search decoding is run in parallel.
|
|
num_beams (`int`):
|
|
Number of beams for beam search.
|
|
device (`torch.device`):
|
|
Defines the device type (*e.g.*, `"cpu"` or `"cuda"`) on which this instance of `BeamSearchScorer` will be
|
|
allocated.
|
|
length_penalty (`float`, *optional*, defaults to 1.0):
|
|
Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent to
|
|
the sequence length, which in turn is used to divide the score of the sequence. Since the score is the log
|
|
likelihood of the sequence (i.e. negative), `length_penalty` > 0.0 promotes longer sequences, while
|
|
`length_penalty` < 0.0 encourages shorter sequences.
|
|
do_early_stopping (`bool` or `str`, *optional*, defaults to `False`):
|
|
Controls the stopping condition for beam-based methods, like beam-search. It accepts the following values:
|
|
`True`, where the generation stops as soon as there are `num_beams` complete candidates; `False`, where an
|
|
heuristic is applied and the generation stops when is it very unlikely to find better candidates;
|
|
`"never"`, where the beam search procedure only stops when there cannot be better candidates (canonical
|
|
beam search algorithm).
|
|
num_beam_hyps_to_keep (`int`, *optional*, defaults to 1):
|
|
The number of beam hypotheses that shall be returned upon calling
|
|
[`~transformers.BeamSearchScorer.finalize`].
|
|
num_beam_groups (`int`, *optional*, defaults to 1):
|
|
Number of groups to divide `num_beams` into in order to ensure diversity among different groups of beams.
|
|
See [this paper](https://arxiv.org/pdf/1610.02424.pdf) for more details.
|
|
max_length (`int`, *optional*):
|
|
The maximum length of the sequence to be generated.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
batch_size: int,
|
|
num_beams: int,
|
|
device: torch.device,
|
|
length_penalty: Optional[float] = 1.0,
|
|
do_early_stopping: Optional[Union[bool, str]] = False,
|
|
num_beam_hyps_to_keep: Optional[int] = 1,
|
|
num_beam_groups: Optional[int] = 1,
|
|
max_length: Optional[int] = None,
|
|
):
|
|
self.num_beams = num_beams
|
|
self.device = device
|
|
self.length_penalty = length_penalty
|
|
self.do_early_stopping = do_early_stopping
|
|
self.num_beam_hyps_to_keep = num_beam_hyps_to_keep
|
|
self.num_beam_groups = num_beam_groups
|
|
self.group_size = self.num_beams // self.num_beam_groups
|
|
|
|
self._is_init = False
|
|
# self._beam_hyps[i*self.num_beam_groups+j] is the beam_hyps of the j-th group in the i-th mini-batch.
|
|
# If group_beam_search is not used, the list consists of `batch_size` beam_hyps.
|
|
self._beam_hyps = [
|
|
BeamHypotheses(
|
|
num_beams=self.group_size,
|
|
length_penalty=self.length_penalty,
|
|
early_stopping=self.do_early_stopping,
|
|
max_length=max_length,
|
|
)
|
|
for _ in range(batch_size * self.num_beam_groups)
|
|
]
|
|
# self._done[i*self.num_beam_groups+j] indicates whether the generation of the beam_hyps of the j-th group
|
|
# in the i-th mini-batch is complete.
|
|
self._done = torch.tensor(
|
|
[False for _ in range(batch_size * self.num_beam_groups)], dtype=torch.bool, device=self.device
|
|
)
|
|
|
|
if not isinstance(num_beams, int) or num_beams <= 1:
|
|
raise ValueError(
|
|
f"`num_beams` has to be an integer strictly greater than 1, but is {num_beams}. For `num_beams` == 1,"
|
|
" one should make use of `greedy_search` instead."
|
|
)
|
|
|
|
if not isinstance(num_beam_groups, int) or (num_beam_groups > num_beams) or (num_beams % num_beam_groups != 0):
|
|
raise ValueError(
|
|
"`num_beam_groups` has to be an integer smaller or equal than `num_beams` and `num_beams` has to be"
|
|
f" divisible by `num_beam_groups`, but is {num_beam_groups} with `num_beams` being {num_beams}."
|
|
)
|
|
|
|
@property
|
|
def is_done(self) -> bool:
|
|
return self._done.all()
|
|
|
|
def process(
|
|
self,
|
|
input_ids: torch.LongTensor,
|
|
next_scores: torch.FloatTensor,
|
|
next_tokens: torch.LongTensor,
|
|
next_indices: torch.LongTensor,
|
|
pad_token_id: Optional[int] = None,
|
|
eos_token_id: Optional[Union[int, List[int]]] = None,
|
|
beam_indices: Optional[torch.LongTensor] = None,
|
|
group_index: Optional[int] = 0,
|
|
decoder_prompt_len: Optional[int] = 0,
|
|
) -> Dict[str, torch.Tensor]:
|
|
# add up to the length which the next_scores is calculated on (including decoder prompt)
|
|
cur_len = input_ids.shape[-1] + 1
|
|
batch_size = len(self._beam_hyps) // self.num_beam_groups
|
|
|
|
if not (batch_size == (input_ids.shape[0] // self.group_size)):
|
|
if self.num_beam_groups > 1:
|
|
raise ValueError(
|
|
f"A group beam size of {input_ids.shape[0]} is used as the input, but a group beam "
|
|
f"size of {self.group_size} is expected by the beam scorer."
|
|
)
|
|
else:
|
|
raise ValueError(
|
|
f"A beam size of {input_ids.shape[0]} is used as the input, but a beam size of "
|
|
f"{self.group_size} is expected by the beam scorer."
|
|
)
|
|
|
|
device = input_ids.device
|
|
next_beam_scores = torch.zeros((batch_size, self.group_size), dtype=next_scores.dtype, device=device)
|
|
next_beam_tokens = torch.zeros((batch_size, self.group_size), dtype=next_tokens.dtype, device=device)
|
|
next_beam_indices = torch.zeros((batch_size, self.group_size), dtype=next_indices.dtype, device=device)
|
|
|
|
if isinstance(eos_token_id, int):
|
|
eos_token_id = [eos_token_id]
|
|
|
|
for batch_idx in range(batch_size):
|
|
batch_group_idx = batch_idx * self.num_beam_groups + group_index
|
|
if self._done[batch_group_idx]:
|
|
if self.num_beams < len(self._beam_hyps[batch_group_idx]):
|
|
raise ValueError(f"Batch can only be done if at least {self.num_beams} beams have been generated")
|
|
if eos_token_id is None or pad_token_id is None:
|
|
raise ValueError("Generated beams >= num_beams -> eos_token_id and pad_token have to be defined")
|
|
# pad the batch
|
|
next_beam_scores[batch_idx, :] = 0
|
|
next_beam_tokens[batch_idx, :] = pad_token_id
|
|
next_beam_indices[batch_idx, :] = 0
|
|
continue
|
|
|
|
# next tokens for this sentence
|
|
beam_idx = 0
|
|
for beam_token_rank, (next_token, next_score, next_index) in enumerate(
|
|
zip(next_tokens[batch_idx], next_scores[batch_idx], next_indices[batch_idx])
|
|
):
|
|
batch_beam_idx = batch_idx * self.group_size + next_index
|
|
# add to generated hypotheses if end of sentence
|
|
if (eos_token_id is not None) and (next_token.item() in eos_token_id):
|
|
# if beam_token does not belong to top num_beams tokens, it should not be added
|
|
is_beam_token_worse_than_top_num_beams = beam_token_rank >= self.group_size
|
|
if is_beam_token_worse_than_top_num_beams:
|
|
continue
|
|
if beam_indices is not None:
|
|
beam_index = beam_indices[batch_beam_idx]
|
|
beam_index = beam_index + (batch_beam_idx,)
|
|
else:
|
|
beam_index = None
|
|
|
|
self._beam_hyps[batch_group_idx].add(
|
|
input_ids[batch_beam_idx].clone(),
|
|
next_score.item(),
|
|
beam_indices=beam_index,
|
|
generated_len=cur_len - decoder_prompt_len,
|
|
)
|
|
else:
|
|
# add next predicted token since it is not eos_token
|
|
next_beam_scores[batch_idx, beam_idx] = next_score
|
|
next_beam_tokens[batch_idx, beam_idx] = next_token
|
|
next_beam_indices[batch_idx, beam_idx] = batch_beam_idx
|
|
beam_idx += 1
|
|
|
|
# once the beam for next step is full, don't add more tokens to it.
|
|
if beam_idx == self.group_size:
|
|
break
|
|
|
|
if beam_idx < self.group_size:
|
|
raise ValueError(
|
|
f"At most {self.group_size} tokens in {next_tokens[batch_idx]} can be equal to `eos_token_id:"
|
|
f" {eos_token_id}`. Make sure {next_tokens[batch_idx]} are corrected."
|
|
)
|
|
|
|
# Check if we are done so that we can save a pad step if all(done)
|
|
self._done[batch_group_idx] = self._done[batch_group_idx] or self._beam_hyps[batch_group_idx].is_done(
|
|
next_scores[batch_idx].max().item(), cur_len, decoder_prompt_len
|
|
)
|
|
|
|
return UserDict(
|
|
{
|
|
"next_beam_scores": next_beam_scores.view(-1),
|
|
"next_beam_tokens": next_beam_tokens.view(-1),
|
|
"next_beam_indices": next_beam_indices.view(-1),
|
|
}
|
|
)
|
|
|
|
def finalize(
|
|
self,
|
|
input_ids: torch.LongTensor,
|
|
final_beam_scores: torch.FloatTensor,
|
|
final_beam_tokens: torch.LongTensor,
|
|
final_beam_indices: torch.LongTensor,
|
|
max_length: int,
|
|
pad_token_id: Optional[int] = None,
|
|
eos_token_id: Optional[Union[int, List[int]]] = None,
|
|
beam_indices: Optional[torch.LongTensor] = None,
|
|
decoder_prompt_len: Optional[int] = 0,
|
|
) -> Tuple[torch.LongTensor]:
|
|
batch_size = len(self._beam_hyps) // self.num_beam_groups
|
|
|
|
if isinstance(eos_token_id, int):
|
|
eos_token_id = [eos_token_id]
|
|
|
|
# finalize all open beam hypotheses and add to generated hypotheses
|
|
for batch_group_idx, beam_hyp in enumerate(self._beam_hyps):
|
|
if self._done[batch_group_idx]:
|
|
continue
|
|
|
|
# all open beam hypotheses are added to the beam hypothesis
|
|
# beam hypothesis class automatically keeps the best beams
|
|
for index_per_group in range(self.group_size):
|
|
batch_beam_idx = batch_group_idx * self.group_size + index_per_group
|
|
final_score = final_beam_scores[batch_beam_idx].item()
|
|
final_tokens = input_ids[batch_beam_idx]
|
|
beam_index = beam_indices[batch_beam_idx] if beam_indices is not None else None
|
|
generated_len = final_tokens.shape[-1] - decoder_prompt_len
|
|
beam_hyp.add(final_tokens, final_score, beam_indices=beam_index, generated_len=generated_len)
|
|
|
|
# select the best hypotheses
|
|
sent_lengths = input_ids.new(batch_size * self.num_beam_hyps_to_keep)
|
|
best = []
|
|
best_indices = []
|
|
best_scores = torch.zeros(batch_size * self.num_beam_hyps_to_keep, device=self.device, dtype=torch.float32)
|
|
|
|
# retrieve best hypotheses
|
|
for i in range(batch_size):
|
|
beam_hyps_in_batch = self._beam_hyps[i * self.num_beam_groups : (i + 1) * self.num_beam_groups]
|
|
candidate_beams = [beam for beam_hyp in beam_hyps_in_batch for beam in beam_hyp.beams]
|
|
sorted_hyps = sorted(candidate_beams, key=lambda x: x[0])
|
|
for j in range(self.num_beam_hyps_to_keep):
|
|
best_hyp_tuple = sorted_hyps.pop()
|
|
best_score = best_hyp_tuple[0]
|
|
best_hyp = best_hyp_tuple[1]
|
|
best_index = best_hyp_tuple[2]
|
|
sent_lengths[self.num_beam_hyps_to_keep * i + j] = len(best_hyp)
|
|
|
|
# append hyp to lists
|
|
best.append(best_hyp)
|
|
|
|
# append indices to list
|
|
best_indices.append(best_index)
|
|
|
|
best_scores[i * self.num_beam_hyps_to_keep + j] = best_score
|
|
|
|
# prepare for adding eos
|
|
sent_lengths_max = sent_lengths.max().item() + 1
|
|
sent_max_len = min(sent_lengths_max, max_length) if max_length is not None else sent_lengths_max
|
|
decoded: torch.LongTensor = input_ids.new(batch_size * self.num_beam_hyps_to_keep, sent_max_len)
|
|
|
|
if len(best_indices) > 0 and best_indices[0] is not None:
|
|
indices: torch.LongTensor = input_ids.new(batch_size * self.num_beam_hyps_to_keep, sent_max_len)
|
|
else:
|
|
indices = None
|
|
|
|
# shorter batches are padded if needed
|
|
if sent_lengths.min().item() != sent_lengths.max().item():
|
|
if pad_token_id is None:
|
|
raise ValueError("`pad_token_id` has to be defined")
|
|
decoded.fill_(pad_token_id)
|
|
|
|
if indices is not None:
|
|
indices.fill_(-1)
|
|
|
|
# fill with hypotheses and eos_token_id if the latter fits in
|
|
for i, (hypo, best_idx) in enumerate(zip(best, best_indices)):
|
|
decoded[i, : sent_lengths[i]] = hypo
|
|
|
|
if indices is not None:
|
|
indices[i, : len(best_idx)] = torch.tensor(best_idx)
|
|
|
|
if sent_lengths[i] < sent_max_len:
|
|
# inserting only the first eos_token_id
|
|
decoded[i, sent_lengths[i]] = eos_token_id[0]
|
|
|
|
return UserDict(
|
|
{
|
|
"sequences": decoded,
|
|
"sequence_scores": best_scores,
|
|
"beam_indices": indices,
|
|
}
|
|
)
|
|
|
|
|
|
class ConstrainedBeamSearchScorer(BeamScorer):
|
|
r"""
|
|
[`BeamScorer`] implementing constrained beam search decoding.
|
|
|
|
|
|
Args:
|
|
batch_size (`int`):
|
|
Batch Size of `input_ids` for which standard beam search decoding is run in parallel.
|
|
num_beams (`int`):
|
|
Number of beams for beam search.
|
|
constraints (`List[Constraint]`):
|
|
A list of positive constraints represented as `Constraint` objects that must be fulfilled in the generation
|
|
output. For more information, the documentation of [`Constraint`] should be read.
|
|
device (`torch.device`):
|
|
Defines the device type (*e.g.*, `"cpu"` or `"cuda"`) on which this instance of `BeamSearchScorer` will be
|
|
allocated.
|
|
length_penalty (`float`, *optional*, defaults to 1.0):
|
|
Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent to
|
|
the sequence length, which in turn is used to divide the score of the sequence. Since the score is the log
|
|
likelihood of the sequence (i.e. negative), `length_penalty` > 0.0 promotes longer sequences, while
|
|
`length_penalty` < 0.0 encourages shorter sequences.
|
|
do_early_stopping (`bool` or `str`, *optional*, defaults to `False`):
|
|
Controls the stopping condition for beam-based methods, like beam-search. It accepts the following values:
|
|
`True`, where the generation stops as soon as there are `num_beams` complete candidates; `False`, where an
|
|
heuristic is applied and the generation stops when is it very unlikely to find better candidates;
|
|
`"never"`, where the beam search procedure only stops when there cannot be better candidates (canonical
|
|
beam search algorithm).
|
|
num_beam_hyps_to_keep (`int`, *optional*, defaults to 1):
|
|
The number of beam hypotheses that shall be returned upon calling
|
|
[`~transformers.BeamSearchScorer.finalize`].
|
|
num_beam_groups (`int`, *optional*, defaults to 1):
|
|
Number of groups to divide `num_beams` into in order to ensure diversity among different groups of beams.
|
|
See [this paper](https://arxiv.org/pdf/1610.02424.pdf) for more details.
|
|
max_length (`int`, *optional*):
|
|
The maximum length of the sequence to be generated.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
batch_size: int,
|
|
num_beams: int,
|
|
constraints: List[Constraint],
|
|
device: torch.device,
|
|
length_penalty: Optional[float] = 1.0,
|
|
do_early_stopping: Optional[Union[bool, str]] = False,
|
|
num_beam_hyps_to_keep: Optional[int] = 1,
|
|
num_beam_groups: Optional[int] = 1,
|
|
max_length: Optional[int] = None,
|
|
):
|
|
self.num_beams = num_beams
|
|
self.device = device
|
|
self.length_penalty = length_penalty
|
|
self.do_early_stopping = do_early_stopping
|
|
self.num_beam_hyps_to_keep = num_beam_hyps_to_keep
|
|
self.num_beam_groups = num_beam_groups
|
|
self.group_size = self.num_beams // self.num_beam_groups
|
|
self.constraints = constraints
|
|
|
|
self._is_init = False
|
|
self._beam_hyps = [
|
|
BeamHypotheses(
|
|
num_beams=self.num_beams,
|
|
length_penalty=self.length_penalty,
|
|
early_stopping=self.do_early_stopping,
|
|
max_length=max_length,
|
|
)
|
|
for _ in range(batch_size)
|
|
]
|
|
self._done = torch.tensor([False for _ in range(batch_size)], dtype=torch.bool, device=self.device)
|
|
|
|
if not isinstance(num_beams, int) or num_beams <= 1:
|
|
raise ValueError(
|
|
f"`num_beams` has to be an integer strictly greater than 1, but is {num_beams}. For `num_beams` == 1,"
|
|
" one should make use of `greedy_search` instead."
|
|
)
|
|
|
|
if not isinstance(num_beam_groups, int) or (num_beam_groups > num_beams) or (num_beams % num_beam_groups != 0):
|
|
raise ValueError(
|
|
"`num_beam_groups` has to be an integer smaller or equal than `num_beams` and `num_beams` has to be"
|
|
f" divisible by `num_beam_groups`, but is {num_beam_groups} with `num_beams` being {num_beams}."
|
|
)
|
|
|
|
@property
|
|
def is_done(self) -> bool:
|
|
return self._done.all()
|
|
|
|
def make_constraint_states(self, n):
|
|
return [ConstraintListState([constraint.copy() for constraint in self.constraints]) for _ in range(n)]
|
|
|
|
def check_completes_constraints(self, sequence):
|
|
new_state = self.make_constraint_states(1)[0]
|
|
new_state.reset(sequence)
|
|
return new_state.completed
|
|
|
|
def process(
|
|
self,
|
|
input_ids: torch.LongTensor,
|
|
next_scores: torch.FloatTensor,
|
|
next_tokens: torch.LongTensor,
|
|
next_indices: torch.LongTensor,
|
|
scores_for_all_vocab: torch.FloatTensor,
|
|
pad_token_id: Optional[int] = None,
|
|
eos_token_id: Optional[Union[int, List[int]]] = None,
|
|
beam_indices: Optional[torch.LongTensor] = None,
|
|
decoder_prompt_len: Optional[int] = 0,
|
|
) -> Tuple[torch.Tensor]:
|
|
r"""
|
|
Args:
|
|
input_ids (`torch.LongTensor` of shape `(batch_size * num_beams, sequence_length)`):
|
|
Indices of input sequence tokens in the vocabulary.
|
|
|
|
Indices can be obtained using any class inheriting from [`PreTrainedTokenizer`]. See
|
|
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
[What are input IDs?](../glossary#input-ids)
|
|
next_scores (`torch.FloatTensor` of shape `(batch_size, 2 * num_beams)`):
|
|
Current scores of the top `2 * num_beams` non-finished beam hypotheses.
|
|
next_tokens (`torch.LongTensor` of shape `(batch_size, 2 * num_beams)`):
|
|
`input_ids` of the tokens corresponding to the top `2 * num_beams` non-finished beam hypotheses.
|
|
next_indices (`torch.LongTensor` of shape `(batch_size, 2 * num_beams)`):
|
|
Beam indices indicating to which beam hypothesis the `next_tokens` correspond.
|
|
scores_for_all_vocab (`torch.FloatTensor` of shape `(batch_size * num_beams, sequence_length)`):
|
|
The scores of all tokens in the vocabulary for each of the beam hypotheses.
|
|
pad_token_id (`int`, *optional*):
|
|
The id of the *padding* token.
|
|
eos_token_id (`Union[int, List[int]]`, *optional*):
|
|
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
|
|
beam_indices (`torch.LongTensor`, *optional*):
|
|
Beam indices indicating to which beam hypothesis each token correspond.
|
|
decoder_prompt_len (`int`, *optional*):
|
|
The length of prompt that is included in the input to decoder.
|
|
Return:
|
|
`UserDict`: A dictionary composed of the fields as defined above:
|
|
|
|
- **next_beam_scores** (`torch.FloatTensor` of shape `(batch_size * num_beams)`) -- Updated scores of
|
|
all
|
|
non-finished beams.
|
|
|
|
- **next_beam_tokens** (`torch.FloatTensor` of shape `(batch_size * num_beams)`) -- Next tokens to be
|
|
added
|
|
to the non-finished beam_hypotheses.
|
|
- **next_beam_indices** (`torch.FloatTensor` of shape `(batch_size * num_beams)`) -- Beam indices
|
|
indicating to which beam the next tokens shall be added.
|
|
"""
|
|
|
|
# add up to the length which the next_scores is calculated on (including decoder prompt)
|
|
cur_len = input_ids.shape[-1] + 1
|
|
batch_size = len(self._beam_hyps)
|
|
if not (batch_size == (input_ids.shape[0] // self.group_size)):
|
|
if self.num_beam_groups > 1:
|
|
raise ValueError(
|
|
f"A group beam size of {input_ids.shape[0]} is used as the input, but a group beam "
|
|
f"size of {self.group_size} is expected by the beam scorer."
|
|
)
|
|
else:
|
|
raise ValueError(
|
|
f"A beam size of {input_ids.shape[0]} is used as the input, but a beam size of "
|
|
f"{self.group_size} is expected by the beam scorer."
|
|
)
|
|
|
|
device = input_ids.device
|
|
|
|
next_beam_scores = torch.zeros((batch_size, self.group_size), dtype=next_scores.dtype, device=device)
|
|
next_beam_tokens = torch.zeros((batch_size, self.group_size), dtype=next_tokens.dtype, device=device)
|
|
next_beam_indices = torch.zeros((batch_size, self.group_size), dtype=next_indices.dtype, device=device)
|
|
|
|
if isinstance(eos_token_id, int):
|
|
eos_token_id = [eos_token_id]
|
|
|
|
for batch_idx, beam_hyp in enumerate(self._beam_hyps):
|
|
if self._done[batch_idx]:
|
|
if self.num_beams < len(beam_hyp):
|
|
raise ValueError(f"Batch can only be done if at least {self.num_beams} beams have been generated")
|
|
if eos_token_id is None or pad_token_id is None:
|
|
raise ValueError("Generated beams >= num_beams -> eos_token_id and pad_token have to be defined")
|
|
# pad the batch
|
|
next_beam_scores[batch_idx, :] = 0
|
|
next_beam_tokens[batch_idx, :] = pad_token_id
|
|
next_beam_indices[batch_idx, :] = 0
|
|
continue
|
|
|
|
# next tokens for this sentence.
|
|
beam_idx = 0
|
|
for beam_token_rank, (next_token, next_score, next_index) in enumerate(
|
|
zip(next_tokens[batch_idx], next_scores[batch_idx], next_indices[batch_idx])
|
|
):
|
|
batch_beam_idx = batch_idx * self.group_size + next_index
|
|
# add to generated hypotheses if end of sentence
|
|
if (eos_token_id is not None) and (next_token.item() in eos_token_id):
|
|
# if beam_token does not belong to top num_beams tokens, it should not be added
|
|
is_beam_token_worse_than_top_num_beams = beam_token_rank >= self.group_size
|
|
if is_beam_token_worse_than_top_num_beams:
|
|
continue
|
|
|
|
completes_constraint = self.check_completes_constraints(input_ids[batch_beam_idx].cpu().tolist())
|
|
if completes_constraint:
|
|
if beam_indices is not None:
|
|
beam_index = beam_indices[batch_beam_idx]
|
|
beam_index = beam_index + (batch_beam_idx,)
|
|
else:
|
|
beam_index = None
|
|
|
|
beam_hyp.add(
|
|
input_ids[batch_beam_idx].clone(),
|
|
next_score.item(),
|
|
beam_indices=beam_index,
|
|
generated_len=cur_len - decoder_prompt_len,
|
|
)
|
|
else:
|
|
# add next predicted token since it is not eos_token
|
|
next_beam_scores[batch_idx, beam_idx] = next_score
|
|
next_beam_tokens[batch_idx, beam_idx] = next_token
|
|
next_beam_indices[batch_idx, beam_idx] = batch_beam_idx
|
|
beam_idx += 1
|
|
|
|
# once the beam for next step is full, don't add more tokens to it.
|
|
if beam_idx == self.group_size:
|
|
break
|
|
|
|
new_scores, new_tokens, new_indices = self.step_sentence_constraint(
|
|
batch_idx,
|
|
input_ids,
|
|
scores_for_all_vocab,
|
|
next_beam_scores[batch_idx],
|
|
next_beam_tokens[batch_idx],
|
|
next_beam_indices[batch_idx],
|
|
)
|
|
|
|
next_beam_scores[batch_idx] = new_scores
|
|
next_beam_tokens[batch_idx] = new_tokens
|
|
next_beam_indices[batch_idx] = new_indices
|
|
|
|
if beam_idx < self.group_size:
|
|
raise ValueError(
|
|
f"At most {self.group_size} tokens in {next_tokens[batch_idx]} can be equal to `eos_token_id:"
|
|
f" {eos_token_id}`. Make sure {next_tokens[batch_idx]} are corrected."
|
|
)
|
|
|
|
# Check if we are done so that we can save a pad step if all(done)
|
|
self._done[batch_idx] = self._done[batch_idx] or beam_hyp.is_done(
|
|
next_scores[batch_idx].max().item(), cur_len, decoder_prompt_len
|
|
)
|
|
|
|
return UserDict(
|
|
{
|
|
"next_beam_scores": next_beam_scores.view(-1),
|
|
"next_beam_tokens": next_beam_tokens.view(-1),
|
|
"next_beam_indices": next_beam_indices.view(-1),
|
|
}
|
|
)
|
|
|
|
def step_sentence_constraint(
|
|
self,
|
|
batch_idx: int,
|
|
input_ids: torch.LongTensor,
|
|
vocab_scores: torch.FloatTensor,
|
|
sent_beam_scores: torch.FloatTensor,
|
|
sent_beam_tokens: torch.LongTensor,
|
|
sent_beam_indices: torch.LongTensor,
|
|
push_progress: bool = False,
|
|
):
|
|
# sent_beam_tokens are the next {num_beams} number of tokens that are under consideration for this beam
|
|
# (candidate next tokens)
|
|
|
|
# 1. Adding "advance_tokens"
|
|
# using ConstraintStateList.advance(), we propose new tokens to be added into this "candidate list" that will
|
|
# advance us in fulfilling the constraints.
|
|
|
|
# 2. Selecting best candidates such that we end up with highest probable candidates
|
|
# that fulfill our constraints.
|
|
|
|
orig_len = sent_beam_indices.size(0)
|
|
device = sent_beam_indices.device
|
|
|
|
# initialize states
|
|
topk_contraint_states = self.make_constraint_states(orig_len)
|
|
advance_constraint_states = self.make_constraint_states(orig_len)
|
|
|
|
sidx, eidx = batch_idx * orig_len, (batch_idx + 1) * orig_len
|
|
this_batch_input_ids = input_ids[sidx:eidx]
|
|
this_batch_token_scores = vocab_scores[sidx:eidx]
|
|
full_hypotheses = torch.cat((input_ids[sent_beam_indices], sent_beam_tokens.unsqueeze(-1)), dim=-1)
|
|
|
|
# need to make new hypothesis that advance the constraints
|
|
track_new = {
|
|
"new_seqs": full_hypotheses.tolist(),
|
|
"new_states": [],
|
|
"new_indices": [],
|
|
"new_tokens": [],
|
|
"new_scores": [],
|
|
}
|
|
for seq_idx, pre_seq in enumerate(this_batch_input_ids):
|
|
# pre_seq = ith sequence generated before this step.
|
|
|
|
# input_ids -> (topk) generic beam search best model next tokens
|
|
# -> (advance) constraints forcing the next token
|
|
# either way, we need to sort them into "banks" later, so store a "ConstraintListState" for all types of
|
|
# hypotheses.
|
|
|
|
topk_state = topk_contraint_states[seq_idx]
|
|
topk_state.reset(full_hypotheses[seq_idx].cpu().tolist())
|
|
|
|
advance_state = advance_constraint_states[seq_idx]
|
|
advance_state.reset(pre_seq.cpu().tolist())
|
|
|
|
if not advance_state.completed:
|
|
advance_tokens = torch.LongTensor(advance_state.advance()).to(device)
|
|
for advance_token in advance_tokens:
|
|
# since adding each `advance_token` leads to a different hypothesis, create new state instance.
|
|
new_state = advance_state.copy(stateful=True)
|
|
new_state.add(advance_token.cpu().tolist())
|
|
|
|
advance_seq = torch.cat((pre_seq, advance_token.unsqueeze(0)), -1).cpu().tolist()
|
|
if advance_seq not in track_new["new_seqs"]:
|
|
# prevent duplicates, which are basically bound to happen in this process.
|
|
track_new["new_seqs"].append(advance_seq)
|
|
track_new["new_indices"].append(sidx + seq_idx) # idx -> global idx across all the batches
|
|
track_new["new_tokens"].append(advance_token)
|
|
track_new["new_scores"].append(this_batch_token_scores[seq_idx].take(advance_token))
|
|
track_new["new_states"].append(new_state)
|
|
elif push_progress:
|
|
# Basically, `sent_beam_indices` often chooses very little among `input_ids` the generated sequences that
|
|
# actually fulfill our constraints. For example, let constraints == ["loves pies"] and
|
|
|
|
# pre_seq_1 = "The child loves pies and" pre_seq_2 = "The child plays in the playground and"
|
|
|
|
# Without this step, if `sent_beam_indices` is something like [1,1], then
|
|
# 1. `pre_seq_1` won't be added to the list of (topk) hypothesis since it's not in the indices and
|
|
# 2. it won't be added to the list of (advance) hypothesis since it's completed already. (this is
|
|
# the else part of `if constraints_completed[seq_idx]`)
|
|
# 3. it ends up simply getting removed from consideration.
|
|
|
|
# #3 might be fine and actually desired, since it's likely that it's a low-probability output anyways,
|
|
# especially if it's not in the list of `sent_beam_indices`. But this often leads to lengthened beam
|
|
# search times, since completed sequences keep getting removed after all this effort for constrained
|
|
# generation.
|
|
|
|
# Here, we basically take `pre_seq_1` and to "push" it into the considered list of hypotheses, by simply
|
|
# appending the next likely token in the vocabulary and adding it to the list of hypotheses.
|
|
|
|
new_score, new_token = torch.max(this_batch_token_scores[seq_idx], 0) # some next probable token
|
|
advance_seq = torch.cat((pre_seq, new_token.unsqueeze(0)), -1)
|
|
|
|
advance_state = advance_constraint_states[seq_idx]
|
|
|
|
advance_seq = advance_seq.cpu().tolist()
|
|
|
|
advance_state.reset(advance_seq)
|
|
if advance_seq not in track_new["new_seqs"]:
|
|
# but still don't want to have duplicates
|
|
track_new["new_seqs"].append(advance_seq)
|
|
track_new["new_indices"].append(seq_idx)
|
|
track_new["new_tokens"].append(new_token)
|
|
track_new["new_scores"].append(new_score)
|
|
track_new["new_states"].append(advance_state)
|
|
|
|
if len(track_new["new_indices"]) > 0:
|
|
new_indices = torch.tensor(track_new["new_indices"]).to(device)
|
|
new_tokens = torch.stack(track_new["new_tokens"]).to(device)
|
|
new_scores = torch.stack(track_new["new_scores"]).to(device)
|
|
|
|
all_states = topk_contraint_states + track_new["new_states"]
|
|
all_tokens = torch.cat((sent_beam_tokens, new_tokens), -1)
|
|
all_scores = torch.cat((sent_beam_scores, new_scores), -1)
|
|
all_banks = torch.tensor([one.get_bank() for one in all_states]).to(device)
|
|
|
|
zipped = all_banks * 100 + all_scores
|
|
indices = zipped.sort(descending=True).indices
|
|
sorted_banks = all_banks[indices]
|
|
|
|
# Then we end up with {sorted among bank C}, {sorted among bank C-1}, ..., {sorted among bank 0}
|
|
|
|
counter = -1
|
|
cur_bank = sorted_banks[0]
|
|
increments = []
|
|
for bank in sorted_banks:
|
|
if bank == cur_bank:
|
|
counter += 1
|
|
else:
|
|
counter = 0
|
|
cur_bank = bank
|
|
increments.append(counter)
|
|
rearrangers = torch.tensor(np.argsort(increments, kind="mergesort"))
|
|
|
|
indices = indices[rearrangers][:orig_len]
|
|
|
|
sent_beam_scores = all_scores[indices]
|
|
sent_beam_tokens = all_tokens[indices]
|
|
sent_beam_indices = torch.cat((sent_beam_indices, new_indices))[indices]
|
|
|
|
return sent_beam_scores, sent_beam_tokens, sent_beam_indices
|
|
|
|
def finalize(
|
|
self,
|
|
input_ids: torch.LongTensor,
|
|
final_beam_scores: torch.FloatTensor,
|
|
final_beam_tokens: torch.LongTensor,
|
|
final_beam_indices: torch.LongTensor,
|
|
max_length: int,
|
|
pad_token_id: Optional[int] = None,
|
|
eos_token_id: Optional[Union[int, List[int]]] = None,
|
|
beam_indices: Optional[torch.LongTensor] = None,
|
|
decoder_prompt_len: Optional[int] = 0,
|
|
) -> Tuple[torch.LongTensor]:
|
|
batch_size = len(self._beam_hyps)
|
|
|
|
if isinstance(eos_token_id, int):
|
|
eos_token_id = [eos_token_id]
|
|
|
|
# finalize all open beam hypotheses and add to generated hypotheses
|
|
for batch_idx, beam_hyp in enumerate(self._beam_hyps):
|
|
if self._done[batch_idx]:
|
|
continue
|
|
|
|
# all open beam hypotheses are added to the beam hypothesis
|
|
# beam hypothesis class automatically keeps the best beams
|
|
|
|
ids_collect = []
|
|
for beam_id in range(self.num_beams):
|
|
batch_beam_idx = batch_idx * self.num_beams + beam_id
|
|
final_score = final_beam_scores[batch_beam_idx].item()
|
|
final_tokens = input_ids[batch_beam_idx]
|
|
|
|
completes_constraint = self.check_completes_constraints(final_tokens.cpu().tolist())
|
|
if completes_constraint:
|
|
beam_index = beam_indices[batch_beam_idx] if beam_indices is not None else None
|
|
generated_len = final_tokens.shape[-1] - decoder_prompt_len
|
|
beam_hyp.add(final_tokens, final_score, beam_indices=beam_index, generated_len=generated_len)
|
|
ids_collect.append(beam_id)
|
|
|
|
# due to overly complex constraints or other factors, sometimes we can't gaurantee a successful
|
|
# generation. In these cases we simply return the highest scoring outputs.
|
|
if len(ids_collect) < self.num_beam_hyps_to_keep:
|
|
for beam_id in range(self.num_beams):
|
|
if beam_id not in ids_collect:
|
|
batch_beam_idx = batch_idx * self.num_beams + beam_id
|
|
final_score = final_beam_scores[batch_beam_idx].item()
|
|
final_tokens = input_ids[batch_beam_idx]
|
|
generated_len = final_tokens.shape[-1] - decoder_prompt_len
|
|
beam_hyp.add(final_tokens, final_score, generated_len=generated_len)
|
|
if len(ids_collect) >= self.num_beam_hyps_to_keep:
|
|
break
|
|
|
|
# select the best hypotheses
|
|
sent_lengths = input_ids.new(batch_size * self.num_beam_hyps_to_keep)
|
|
best = []
|
|
best_indices = []
|
|
best_scores = torch.zeros(batch_size * self.num_beam_hyps_to_keep, device=self.device, dtype=torch.float32)
|
|
|
|
# retrieve best hypotheses
|
|
for i, beam_hyp in enumerate(self._beam_hyps):
|
|
sorted_hyps = sorted(beam_hyp.beams, key=lambda x: x[0])
|
|
for j in range(self.num_beam_hyps_to_keep):
|
|
best_hyp_tuple = sorted_hyps.pop()
|
|
best_score = best_hyp_tuple[0]
|
|
best_hyp = best_hyp_tuple[1]
|
|
best_index = best_hyp_tuple[2]
|
|
sent_lengths[self.num_beam_hyps_to_keep * i + j] = len(best_hyp)
|
|
|
|
# append to lists
|
|
best.append(best_hyp)
|
|
|
|
# append indices to list
|
|
best_indices.append(best_index)
|
|
|
|
best_scores[i * self.num_beam_hyps_to_keep + j] = best_score
|
|
|
|
# prepare for adding eos
|
|
sent_lengths_max = sent_lengths.max().item() + 1
|
|
|
|
sent_max_len = min(sent_lengths_max, max_length) if max_length is not None else sent_lengths_max
|
|
decoded: torch.LongTensor = input_ids.new(batch_size * self.num_beam_hyps_to_keep, sent_max_len)
|
|
|
|
if len(best_indices) > 0 and best_indices[0] is not None:
|
|
indices: torch.LongTensor = input_ids.new(batch_size * self.num_beam_hyps_to_keep, sent_max_len)
|
|
else:
|
|
indices = None
|
|
|
|
# shorter batches are padded if needed
|
|
if sent_lengths.min().item() != sent_lengths.max().item():
|
|
if pad_token_id is None:
|
|
raise ValueError("`pad_token_id` has to be defined")
|
|
decoded.fill_(pad_token_id)
|
|
|
|
if indices is not None:
|
|
indices.fill_(-1)
|
|
|
|
# fill with hypotheses and eos_token_id if the latter fits in
|
|
for i, (hypo, best_idx) in enumerate(zip(best, best_indices)):
|
|
decoded[i, : sent_lengths[i]] = hypo
|
|
|
|
if indices is not None:
|
|
indices[i, : len(best_idx)] = torch.tensor(best_idx)
|
|
|
|
if sent_lengths[i] < sent_max_len:
|
|
# inserting only the first eos_token_id
|
|
decoded[i, sent_lengths[i]] = eos_token_id[0]
|
|
|
|
return UserDict(
|
|
{
|
|
"sequences": decoded,
|
|
"sequence_scores": best_scores,
|
|
"beam_indices": indices,
|
|
}
|
|
)
|
|
|
|
|
|
class BeamHypotheses:
|
|
def __init__(self, num_beams: int, length_penalty: float, early_stopping: bool, max_length: Optional[int] = None):
|
|
"""
|
|
Initialize n-best list of hypotheses.
|
|
"""
|
|
self.length_penalty = length_penalty
|
|
self.early_stopping = early_stopping
|
|
self.max_length = max_length
|
|
self.num_beams = num_beams
|
|
self.beams = []
|
|
self.worst_score = 1e9
|
|
|
|
if not isinstance(self.early_stopping, bool) and self.max_length is None:
|
|
raise ValueError(
|
|
"When `do_early_stopping` is set to a string, `max_length` must be defined. Ensure it is passed to the"
|
|
" BeamScorer class instance at initialization time."
|
|
)
|
|
|
|
def __len__(self):
|
|
"""
|
|
Number of hypotheses in the list.
|
|
"""
|
|
return len(self.beams)
|
|
|
|
def add(
|
|
self,
|
|
hyp: torch.LongTensor,
|
|
sum_logprobs: float,
|
|
beam_indices: Optional[torch.LongTensor] = None,
|
|
generated_len: Optional[int] = None,
|
|
):
|
|
"""
|
|
Add a new hypothesis to the list.
|
|
"""
|
|
if generated_len is not None:
|
|
score = sum_logprobs / (generated_len**self.length_penalty)
|
|
# This 'else' case exists for retrocompatibility
|
|
else:
|
|
score = sum_logprobs / (hyp.shape[-1] ** self.length_penalty)
|
|
|
|
if len(self) < self.num_beams or score > self.worst_score:
|
|
self.beams.append((score, hyp, beam_indices))
|
|
if len(self) > self.num_beams:
|
|
sorted_next_scores = sorted([(s, idx) for idx, (s, _, _) in enumerate(self.beams)])
|
|
del self.beams[sorted_next_scores[0][1]]
|
|
self.worst_score = sorted_next_scores[1][0]
|
|
else:
|
|
self.worst_score = min(score, self.worst_score)
|
|
|
|
def is_done(self, best_sum_logprobs: float, cur_len: int, decoder_prompt_len: Optional[int] = 0) -> bool:
|
|
"""
|
|
If there are enough hypotheses and that none of the hypotheses being generated can become better than the worst
|
|
one in the heap, then we are done with this sentence.
|
|
"""
|
|
|
|
if len(self) < self.num_beams:
|
|
return False
|
|
|
|
# `True`: stop as soon as at least `num_beams` hypotheses are finished
|
|
if self.early_stopping is True:
|
|
return True
|
|
# `False`: heuristic -- compute best possible score from `cur_len`, even though it is not entirely accurate
|
|
# when `length_penalty` is positive. See the discussion below for more details.
|
|
# https://github.com/huggingface/transformers/pull/20901#issuecomment-1369845565
|
|
elif self.early_stopping is False:
|
|
highest_attainable_score = best_sum_logprobs / (cur_len - decoder_prompt_len) ** self.length_penalty
|
|
ret = self.worst_score >= highest_attainable_score
|
|
return ret
|
|
# `"never"`: compute the best possible score, depending on the signal of `length_penalty`
|
|
else:
|
|
# `length_penalty` > 0.0 -> max denominator is obtaned from `max_length`, not from `cur_len` -> min
|
|
# abs(`highest_attainable_score`) is obtained -> `highest_attainable_score` is negative, hence we obtain
|
|
# its max this way
|
|
if self.length_penalty > 0.0:
|
|
if self.max_length <= decoder_prompt_len:
|
|
raise ValueError("max_length is not larger than decoder prompt length")
|
|
highest_attainable_score = (
|
|
best_sum_logprobs / (self.max_length - decoder_prompt_len) ** self.length_penalty
|
|
)
|
|
# the opposite logic applies here (max `highest_attainable_score` from `cur_len`)
|
|
else:
|
|
highest_attainable_score = best_sum_logprobs / (cur_len - decoder_prompt_len) ** self.length_penalty
|
|
ret = self.worst_score >= highest_attainable_score
|
|
return ret
|