402 lines
18 KiB
Python
402 lines
18 KiB
Python
# coding=utf-8
|
|
# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" BART model configuration"""
|
|
import warnings
|
|
from collections import OrderedDict
|
|
from typing import Any, Mapping, Optional
|
|
|
|
from ... import PreTrainedTokenizer
|
|
from ...configuration_utils import PretrainedConfig
|
|
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeq2SeqConfigWithPast
|
|
from ...onnx.utils import compute_effective_axis_dimension
|
|
from ...utils import TensorType, is_torch_available, logging
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
class BartConfig(PretrainedConfig):
|
|
r"""
|
|
This is the configuration class to store the configuration of a [`BartModel`]. It is used to instantiate a BART
|
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
|
defaults will yield a similar configuration to that of the BART
|
|
[facebook/bart-large](https://huggingface.co/facebook/bart-large) architecture.
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
|
|
|
|
Args:
|
|
vocab_size (`int`, *optional*, defaults to 50265):
|
|
Vocabulary size of the BART model. Defines the number of different tokens that can be represented by the
|
|
`inputs_ids` passed when calling [`BartModel`] or [`TFBartModel`].
|
|
d_model (`int`, *optional*, defaults to 1024):
|
|
Dimensionality of the layers and the pooler layer.
|
|
encoder_layers (`int`, *optional*, defaults to 12):
|
|
Number of encoder layers.
|
|
decoder_layers (`int`, *optional*, defaults to 12):
|
|
Number of decoder layers.
|
|
encoder_attention_heads (`int`, *optional*, defaults to 16):
|
|
Number of attention heads for each attention layer in the Transformer encoder.
|
|
decoder_attention_heads (`int`, *optional*, defaults to 16):
|
|
Number of attention heads for each attention layer in the Transformer decoder.
|
|
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
|
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
|
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
|
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
|
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
|
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
|
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
|
dropout (`float`, *optional*, defaults to 0.1):
|
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
|
attention_dropout (`float`, *optional*, defaults to 0.0):
|
|
The dropout ratio for the attention probabilities.
|
|
activation_dropout (`float`, *optional*, defaults to 0.0):
|
|
The dropout ratio for activations inside the fully connected layer.
|
|
classifier_dropout (`float`, *optional*, defaults to 0.0):
|
|
The dropout ratio for classifier.
|
|
max_position_embeddings (`int`, *optional*, defaults to 1024):
|
|
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
|
just in case (e.g., 512 or 1024 or 2048).
|
|
init_std (`float`, *optional*, defaults to 0.02):
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
|
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
|
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
|
for more details.
|
|
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
|
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
|
for more details.
|
|
scale_embedding (`bool`, *optional*, defaults to `False`):
|
|
Scale embeddings by diving by sqrt(d_model).
|
|
use_cache (`bool`, *optional*, defaults to `True`):
|
|
Whether or not the model should return the last key/values attentions (not used by all models).
|
|
num_labels (`int`, *optional*, defaults to 3):
|
|
The number of labels to use in [`BartForSequenceClassification`].
|
|
forced_eos_token_id (`int`, *optional*, defaults to 2):
|
|
The id of the token to force as the last generated token when `max_length` is reached. Usually set to
|
|
`eos_token_id`.
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import BartConfig, BartModel
|
|
|
|
>>> # Initializing a BART facebook/bart-large style configuration
|
|
>>> configuration = BartConfig()
|
|
|
|
>>> # Initializing a model (with random weights) from the facebook/bart-large style configuration
|
|
>>> model = BartModel(configuration)
|
|
|
|
>>> # Accessing the model configuration
|
|
>>> configuration = model.config
|
|
```"""
|
|
|
|
model_type = "bart"
|
|
keys_to_ignore_at_inference = ["past_key_values"]
|
|
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_size=50265,
|
|
max_position_embeddings=1024,
|
|
encoder_layers=12,
|
|
encoder_ffn_dim=4096,
|
|
encoder_attention_heads=16,
|
|
decoder_layers=12,
|
|
decoder_ffn_dim=4096,
|
|
decoder_attention_heads=16,
|
|
encoder_layerdrop=0.0,
|
|
decoder_layerdrop=0.0,
|
|
activation_function="gelu",
|
|
d_model=1024,
|
|
dropout=0.1,
|
|
attention_dropout=0.0,
|
|
activation_dropout=0.0,
|
|
init_std=0.02,
|
|
classifier_dropout=0.0,
|
|
scale_embedding=False,
|
|
use_cache=True,
|
|
num_labels=3,
|
|
pad_token_id=1,
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
is_encoder_decoder=True,
|
|
decoder_start_token_id=2,
|
|
forced_eos_token_id=2,
|
|
**kwargs,
|
|
):
|
|
self.vocab_size = vocab_size
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.d_model = d_model
|
|
self.encoder_ffn_dim = encoder_ffn_dim
|
|
self.encoder_layers = encoder_layers
|
|
self.encoder_attention_heads = encoder_attention_heads
|
|
self.decoder_ffn_dim = decoder_ffn_dim
|
|
self.decoder_layers = decoder_layers
|
|
self.decoder_attention_heads = decoder_attention_heads
|
|
self.dropout = dropout
|
|
self.attention_dropout = attention_dropout
|
|
self.activation_dropout = activation_dropout
|
|
self.activation_function = activation_function
|
|
self.init_std = init_std
|
|
self.encoder_layerdrop = encoder_layerdrop
|
|
self.decoder_layerdrop = decoder_layerdrop
|
|
self.classifier_dropout = classifier_dropout
|
|
self.use_cache = use_cache
|
|
self.num_hidden_layers = encoder_layers
|
|
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
|
|
|
|
super().__init__(
|
|
num_labels=num_labels,
|
|
pad_token_id=pad_token_id,
|
|
bos_token_id=bos_token_id,
|
|
eos_token_id=eos_token_id,
|
|
is_encoder_decoder=is_encoder_decoder,
|
|
decoder_start_token_id=decoder_start_token_id,
|
|
forced_eos_token_id=forced_eos_token_id,
|
|
**kwargs,
|
|
)
|
|
|
|
# ensure backward compatibility for BART CNN models
|
|
if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated", False):
|
|
self.forced_bos_token_id = self.bos_token_id
|
|
warnings.warn(
|
|
f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. "
|
|
"The config can simply be saved and uploaded again to be fixed."
|
|
)
|
|
|
|
|
|
class BartOnnxConfig(OnnxSeq2SeqConfigWithPast):
|
|
@property
|
|
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
|
if self.task in ["default", "seq2seq-lm"]:
|
|
common_inputs = OrderedDict(
|
|
[
|
|
("input_ids", {0: "batch", 1: "encoder_sequence"}),
|
|
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
|
|
]
|
|
)
|
|
|
|
if self.use_past:
|
|
common_inputs["decoder_input_ids"] = {0: "batch"}
|
|
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"}
|
|
else:
|
|
common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
|
|
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"}
|
|
|
|
if self.use_past:
|
|
self.fill_with_past_key_values_(common_inputs, direction="inputs")
|
|
elif self.task == "causal-lm":
|
|
# TODO: figure this case out.
|
|
common_inputs = OrderedDict(
|
|
[
|
|
("input_ids", {0: "batch", 1: "encoder_sequence"}),
|
|
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
|
|
]
|
|
)
|
|
if self.use_past:
|
|
num_encoder_layers, _ = self.num_layers
|
|
for i in range(num_encoder_layers):
|
|
common_inputs[f"past_key_values.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
|
|
common_inputs[f"past_key_values.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
|
|
else:
|
|
common_inputs = OrderedDict(
|
|
[
|
|
("input_ids", {0: "batch", 1: "encoder_sequence"}),
|
|
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
|
|
("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}),
|
|
("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}),
|
|
]
|
|
)
|
|
|
|
return common_inputs
|
|
|
|
@property
|
|
def outputs(self) -> Mapping[str, Mapping[int, str]]:
|
|
if self.task in ["default", "seq2seq-lm"]:
|
|
common_outputs = super().outputs
|
|
else:
|
|
common_outputs = super(OnnxConfigWithPast, self).outputs
|
|
if self.use_past:
|
|
num_encoder_layers, _ = self.num_layers
|
|
for i in range(num_encoder_layers):
|
|
common_outputs[f"present.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
|
|
common_outputs[f"present.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
|
|
return common_outputs
|
|
|
|
def _generate_dummy_inputs_for_default_and_seq2seq_lm(
|
|
self,
|
|
tokenizer: PreTrainedTokenizer,
|
|
batch_size: int = -1,
|
|
seq_length: int = -1,
|
|
is_pair: bool = False,
|
|
framework: Optional[TensorType] = None,
|
|
) -> Mapping[str, Any]:
|
|
encoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
|
|
tokenizer, batch_size, seq_length, is_pair, framework
|
|
)
|
|
|
|
# Generate decoder inputs
|
|
decoder_seq_length = seq_length if not self.use_past else 1
|
|
decoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
|
|
tokenizer, batch_size, decoder_seq_length, is_pair, framework
|
|
)
|
|
decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
|
|
common_inputs = dict(**encoder_inputs, **decoder_inputs)
|
|
|
|
if self.use_past:
|
|
if not is_torch_available():
|
|
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
|
|
else:
|
|
import torch
|
|
batch, encoder_seq_length = common_inputs["input_ids"].shape
|
|
decoder_seq_length = common_inputs["decoder_input_ids"].shape[1]
|
|
num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads
|
|
encoder_shape = (
|
|
batch,
|
|
num_encoder_attention_heads,
|
|
encoder_seq_length,
|
|
self._config.hidden_size // num_encoder_attention_heads,
|
|
)
|
|
decoder_past_length = decoder_seq_length + 3
|
|
decoder_shape = (
|
|
batch,
|
|
num_decoder_attention_heads,
|
|
decoder_past_length,
|
|
self._config.hidden_size // num_decoder_attention_heads,
|
|
)
|
|
|
|
common_inputs["decoder_attention_mask"] = torch.cat(
|
|
[common_inputs["decoder_attention_mask"], torch.ones(batch, decoder_past_length)], dim=1
|
|
)
|
|
|
|
common_inputs["past_key_values"] = []
|
|
# If the number of encoder and decoder layers are present in the model configuration, both are considered
|
|
num_encoder_layers, num_decoder_layers = self.num_layers
|
|
min_num_layers = min(num_encoder_layers, num_decoder_layers)
|
|
max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers
|
|
remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
|
|
|
|
for _ in range(min_num_layers):
|
|
common_inputs["past_key_values"].append(
|
|
(
|
|
torch.zeros(decoder_shape),
|
|
torch.zeros(decoder_shape),
|
|
torch.zeros(encoder_shape),
|
|
torch.zeros(encoder_shape),
|
|
)
|
|
)
|
|
# TODO: test this.
|
|
shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape
|
|
for _ in range(min_num_layers, max_num_layers):
|
|
common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape)))
|
|
return common_inputs
|
|
|
|
def _generate_dummy_inputs_for_causal_lm(
|
|
self,
|
|
tokenizer: PreTrainedTokenizer,
|
|
batch_size: int = -1,
|
|
seq_length: int = -1,
|
|
is_pair: bool = False,
|
|
framework: Optional[TensorType] = None,
|
|
) -> Mapping[str, Any]:
|
|
common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
|
|
tokenizer, batch_size, seq_length, is_pair, framework
|
|
)
|
|
|
|
if self.use_past:
|
|
if not is_torch_available():
|
|
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
|
|
else:
|
|
import torch
|
|
batch, seqlen = common_inputs["input_ids"].shape
|
|
# Not using the same length for past_key_values
|
|
past_key_values_length = seqlen + 2
|
|
num_encoder_layers, _ = self.num_layers
|
|
num_encoder_attention_heads, _ = self.num_attention_heads
|
|
past_shape = (
|
|
batch,
|
|
num_encoder_attention_heads,
|
|
past_key_values_length,
|
|
self._config.hidden_size // num_encoder_attention_heads,
|
|
)
|
|
|
|
mask_dtype = common_inputs["attention_mask"].dtype
|
|
common_inputs["attention_mask"] = torch.cat(
|
|
[common_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
|
|
)
|
|
common_inputs["past_key_values"] = [
|
|
(torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(num_encoder_layers)
|
|
]
|
|
return common_inputs
|
|
|
|
def _generate_dummy_inputs_for_sequence_classification_and_question_answering(
|
|
self,
|
|
tokenizer: PreTrainedTokenizer,
|
|
batch_size: int = -1,
|
|
seq_length: int = -1,
|
|
is_pair: bool = False,
|
|
framework: Optional[TensorType] = None,
|
|
) -> Mapping[str, Any]:
|
|
# Copied from OnnxConfig.generate_dummy_inputs
|
|
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
|
|
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
|
|
batch_size = compute_effective_axis_dimension(
|
|
batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0
|
|
)
|
|
|
|
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
|
|
token_to_add = tokenizer.num_special_tokens_to_add(is_pair)
|
|
seq_length = compute_effective_axis_dimension(
|
|
seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add
|
|
)
|
|
|
|
# Generate dummy inputs according to compute batch and sequence
|
|
dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size
|
|
common_inputs = dict(tokenizer(dummy_input, return_tensors=framework))
|
|
return common_inputs
|
|
|
|
def generate_dummy_inputs(
|
|
self,
|
|
tokenizer: PreTrainedTokenizer,
|
|
batch_size: int = -1,
|
|
seq_length: int = -1,
|
|
is_pair: bool = False,
|
|
framework: Optional[TensorType] = None,
|
|
) -> Mapping[str, Any]:
|
|
if self.task in ["default", "seq2seq-lm"]:
|
|
common_inputs = self._generate_dummy_inputs_for_default_and_seq2seq_lm(
|
|
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
|
|
)
|
|
|
|
elif self.task == "causal-lm":
|
|
common_inputs = self._generate_dummy_inputs_for_causal_lm(
|
|
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
|
|
)
|
|
else:
|
|
common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
|
|
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
|
|
)
|
|
|
|
return common_inputs
|
|
|
|
def _flatten_past_key_values_(self, flattened_output, name, idx, t):
|
|
if self.task in ["default", "seq2seq-lm"]:
|
|
flattened_output = super()._flatten_past_key_values_(flattened_output, name, idx, t)
|
|
else:
|
|
flattened_output = super(OnnxSeq2SeqConfigWithPast, self)._flatten_past_key_values_(
|
|
flattened_output, name, idx, t
|
|
)
|