358 lines
13 KiB
Python
358 lines
13 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 The HuggingFace Team and Microsoft Research AI4Science. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Tokenization classes for BioGPT."""
|
|
import json
|
|
import os
|
|
from typing import List, Optional, Tuple
|
|
|
|
from ...tokenization_utils import PreTrainedTokenizer
|
|
from ...utils import logging
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
VOCAB_FILES_NAMES = {
|
|
"vocab_file": "vocab.json",
|
|
"merges_file": "merges.txt",
|
|
}
|
|
|
|
|
|
def get_pairs(word):
|
|
"""
|
|
Return set of symbol pairs in a word. word is represented as tuple of symbols (symbols being variable-length
|
|
strings)
|
|
"""
|
|
pairs = set()
|
|
prev_char = word[0]
|
|
for char in word[1:]:
|
|
pairs.add((prev_char, char))
|
|
prev_char = char
|
|
return pairs
|
|
|
|
|
|
class BioGptTokenizer(PreTrainedTokenizer):
|
|
"""
|
|
Construct an FAIRSEQ Transformer tokenizer. Moses tokenization followed by Byte-Pair Encoding.
|
|
|
|
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
|
this superclass for more information regarding those methods.
|
|
|
|
Args:
|
|
vocab_file (`str`):
|
|
Path to the vocabulary file.
|
|
merges_file (`str`):
|
|
Merges file.
|
|
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
|
token instead.
|
|
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
|
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
|
|
|
<Tip>
|
|
|
|
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
|
sequence. The token used is the `cls_token`.
|
|
|
|
</Tip>
|
|
|
|
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
|
The end of sequence token.
|
|
|
|
<Tip>
|
|
|
|
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
|
The token used is the `sep_token`.
|
|
|
|
</Tip>
|
|
|
|
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
|
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
|
sequence classification or for a text and a question for question answering. It is also used as the last
|
|
token of a sequence built with special tokens.
|
|
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
|
The token used for padding, for example when batching sequences of different lengths.
|
|
"""
|
|
|
|
vocab_files_names = VOCAB_FILES_NAMES
|
|
model_input_names = ["input_ids", "attention_mask"]
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_file,
|
|
merges_file,
|
|
unk_token="<unk>",
|
|
bos_token="<s>",
|
|
eos_token="</s>",
|
|
sep_token="</s>",
|
|
pad_token="<pad>",
|
|
**kwargs,
|
|
):
|
|
try:
|
|
import sacremoses
|
|
except ImportError:
|
|
raise ImportError(
|
|
"You need to install sacremoses to use BioGptTokenizer. "
|
|
"See https://pypi.org/project/sacremoses/ for installation."
|
|
)
|
|
|
|
self.lang = "en"
|
|
self.sm = sacremoses
|
|
# cache of sm.MosesTokenizer instance
|
|
self.cache_moses_tokenizer = {}
|
|
self.cache_moses_detokenizer = {}
|
|
|
|
""" Initialisation"""
|
|
with open(vocab_file, encoding="utf-8") as vocab_handle:
|
|
self.encoder = json.load(vocab_handle)
|
|
self.decoder = {v: k for k, v in self.encoder.items()}
|
|
with open(merges_file, encoding="utf-8") as merges_handle:
|
|
merges = merges_handle.read().split("\n")[:-1]
|
|
merges = [tuple(merge.split()[:2]) for merge in merges]
|
|
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
|
self.cache = {}
|
|
|
|
super().__init__(
|
|
bos_token=bos_token,
|
|
eos_token=eos_token,
|
|
sep_token=sep_token,
|
|
unk_token=unk_token,
|
|
pad_token=pad_token,
|
|
**kwargs,
|
|
)
|
|
|
|
@property
|
|
def vocab_size(self):
|
|
"""Returns vocab size"""
|
|
return len(self.encoder)
|
|
|
|
def get_vocab(self):
|
|
return dict(self.encoder, **self.added_tokens_encoder)
|
|
|
|
def moses_tokenize(self, text, lang):
|
|
if lang not in self.cache_moses_tokenizer:
|
|
moses_tokenizer = self.sm.MosesTokenizer(lang=lang)
|
|
self.cache_moses_tokenizer[lang] = moses_tokenizer
|
|
return self.cache_moses_tokenizer[lang].tokenize(
|
|
text, aggressive_dash_splits=True, return_str=False, escape=True
|
|
)
|
|
|
|
def moses_detokenize(self, tokens, lang):
|
|
if lang not in self.cache_moses_detokenizer:
|
|
moses_detokenizer = self.sm.MosesDetokenizer(lang=lang)
|
|
self.cache_moses_detokenizer[lang] = moses_detokenizer
|
|
return self.cache_moses_detokenizer[lang].detokenize(tokens)
|
|
|
|
def bpe(self, token):
|
|
word = tuple(token[:-1]) + (token[-1] + "</w>",)
|
|
if token in self.cache:
|
|
return self.cache[token]
|
|
pairs = get_pairs(word)
|
|
|
|
if not pairs:
|
|
return token + "</w>"
|
|
|
|
while True:
|
|
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
|
if bigram not in self.bpe_ranks:
|
|
break
|
|
first, second = bigram
|
|
new_word = []
|
|
i = 0
|
|
while i < len(word):
|
|
try:
|
|
j = word.index(first, i)
|
|
except ValueError:
|
|
new_word.extend(word[i:])
|
|
break
|
|
else:
|
|
new_word.extend(word[i:j])
|
|
i = j
|
|
|
|
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
|
new_word.append(first + second)
|
|
i += 2
|
|
else:
|
|
new_word.append(word[i])
|
|
i += 1
|
|
new_word = tuple(new_word)
|
|
word = new_word
|
|
if len(word) == 1:
|
|
break
|
|
else:
|
|
pairs = get_pairs(word)
|
|
word = " ".join(word)
|
|
if word == "\n </w>":
|
|
word = "\n</w>"
|
|
self.cache[token] = word
|
|
return word
|
|
|
|
def _tokenize(self, text, bypass_tokenizer=False):
|
|
"""Returns a tokenized string."""
|
|
if bypass_tokenizer:
|
|
text = text.split()
|
|
else:
|
|
text = self.moses_tokenize(text, self.lang)
|
|
|
|
split_tokens = []
|
|
for token in text:
|
|
if token:
|
|
split_tokens.extend(list(self.bpe(token).split(" ")))
|
|
|
|
return split_tokens
|
|
|
|
def _convert_token_to_id(self, token):
|
|
"""Converts a token (str) in an id using the vocab."""
|
|
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
|
|
|
def _convert_id_to_token(self, index):
|
|
"""Converts an index (integer) in a token (str) using the vocab."""
|
|
return self.decoder.get(index, self.unk_token)
|
|
|
|
def convert_tokens_to_string(self, tokens):
|
|
"""Converts a sequence of tokens (string) in a single string."""
|
|
# remove BPE
|
|
tokens = [t.replace(" ", "").replace("</w>", " ") for t in tokens]
|
|
tokens = "".join(tokens).split()
|
|
# detokenize
|
|
text = self.moses_detokenize(tokens, self.lang)
|
|
return text
|
|
|
|
def build_inputs_with_special_tokens(
|
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
|
) -> List[int]:
|
|
"""
|
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
|
adding special tokens. A BioGPT sequence has the following format:
|
|
|
|
- single sequence: `</s> X `
|
|
- pair of sequences: `</s> A </s> B `
|
|
|
|
Args:
|
|
token_ids_0 (`List[int]`):
|
|
List of IDs to which the special tokens will be added.
|
|
token_ids_1 (`List[int]`, *optional*):
|
|
Optional second list of IDs for sequence pairs.
|
|
|
|
Returns:
|
|
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
|
"""
|
|
if token_ids_1 is None:
|
|
return [self.sep_token_id] + token_ids_0
|
|
sep = [self.sep_token_id]
|
|
return sep + token_ids_0 + sep + token_ids_1
|
|
|
|
def get_special_tokens_mask(
|
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
|
) -> List[int]:
|
|
"""
|
|
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
|
special tokens using the tokenizer `prepare_for_model` method.
|
|
|
|
Args:
|
|
token_ids_0 (`List[int]`):
|
|
List of IDs.
|
|
token_ids_1 (`List[int]`, *optional*):
|
|
Optional second list of IDs for sequence pairs.
|
|
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
|
Whether or not the token list is already formatted with special tokens for the model.
|
|
|
|
Returns:
|
|
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
|
"""
|
|
if already_has_special_tokens:
|
|
return super().get_special_tokens_mask(
|
|
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
|
)
|
|
# no bos used in fairseq
|
|
if token_ids_1 is not None:
|
|
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))
|
|
return [1] + ([0] * len(token_ids_0))
|
|
|
|
def create_token_type_ids_from_sequences(
|
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
|
) -> List[int]:
|
|
"""
|
|
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A FAIRSEQ
|
|
Transformer sequence pair mask has the following format:
|
|
|
|
```
|
|
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
|
| first sequence | second sequence |
|
|
```
|
|
|
|
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
|
|
|
|
Args:
|
|
token_ids_0 (`List[int]`):
|
|
List of IDs.
|
|
token_ids_1 (`List[int]`, *optional*):
|
|
Optional second list of IDs for sequence pairs.
|
|
|
|
Returns:
|
|
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
|
"""
|
|
sep = [self.sep_token_id]
|
|
|
|
# no bos used in fairseq
|
|
if token_ids_1 is None:
|
|
return len(token_ids_0 + sep) * [0]
|
|
return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
|
if not os.path.isdir(save_directory):
|
|
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
|
return
|
|
vocab_file = os.path.join(
|
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
|
)
|
|
merge_file = os.path.join(
|
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
|
|
)
|
|
|
|
with open(vocab_file, "w", encoding="utf-8") as f:
|
|
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
|
|
|
|
index = 0
|
|
with open(merge_file, "w", encoding="utf-8") as writer:
|
|
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
|
|
if index != token_index:
|
|
logger.warning(
|
|
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
|
|
" Please check that the tokenizer is not corrupted!"
|
|
)
|
|
index = token_index
|
|
writer.write(" ".join(bpe_tokens) + "\n")
|
|
index += 1
|
|
|
|
return vocab_file, merge_file
|
|
|
|
def __getstate__(self):
|
|
state = self.__dict__.copy()
|
|
state["sm"] = None
|
|
return state
|
|
|
|
def __setstate__(self, d):
|
|
self.__dict__ = d
|
|
|
|
try:
|
|
import sacremoses
|
|
except ImportError:
|
|
raise ImportError(
|
|
"You need to install sacremoses to use XLMTokenizer. "
|
|
"See https://pypi.org/project/sacremoses/ for installation."
|
|
)
|
|
|
|
self.sm = sacremoses
|