237 lines
10 KiB
Python
237 lines
10 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 the Big Science Workshop and HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" Bloom configuration"""
|
|
from collections import OrderedDict
|
|
from typing import TYPE_CHECKING, Any, List, Mapping, Optional
|
|
|
|
from packaging import version
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from ... import PreTrainedTokenizer, TensorType
|
|
|
|
from ...configuration_utils import PretrainedConfig
|
|
from ...onnx import OnnxConfigWithPast, PatchingSpec
|
|
from ...utils import is_torch_available, logging
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
from ..deprecated._archive_maps import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
|
|
|
|
|
class BloomConfig(PretrainedConfig):
|
|
"""
|
|
This is the configuration class to store the configuration of a [`BloomModel`]. It is used to instantiate a Bloom
|
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
|
defaults will yield a similar configuration to the Bloom architecture
|
|
[bigscience/bloom](https://huggingface.co/bigscience/bloom).
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
|
|
|
|
Args:
|
|
vocab_size (`int`, *optional*, defaults to 250880):
|
|
Vocabulary size of the Bloom model. Defines the maximum number of different tokens that can be represented
|
|
by the `inputs_ids` passed when calling [`BloomModel`]. Check [this
|
|
discussion](https://huggingface.co/bigscience/bloom/discussions/120#633d28389addb8530b406c2a) on how the
|
|
`vocab_size` has been defined.
|
|
hidden_size (`int`, *optional*, defaults to 64):
|
|
Dimensionality of the embeddings and hidden states.
|
|
n_layer (`int`, *optional*, defaults to 2):
|
|
Number of hidden layers in the Transformer encoder.
|
|
n_head (`int`, *optional*, defaults to 8):
|
|
Number of attention heads for each attention layer in the Transformer encoder.
|
|
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
|
|
The epsilon to use in the layer normalization layers.
|
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
|
apply_residual_connection_post_layernorm (`bool`, *optional*, defaults to `False`):
|
|
If enabled, use the layer norm of the hidden states as the residual in the transformer blocks
|
|
hidden_dropout (`float`, *optional*, defaults to 0.1):
|
|
Dropout rate of the dropout function on the bias dropout.
|
|
attention_dropout (`float`, *optional*, defaults to 0.1):
|
|
Dropout rate applied to the attention probs
|
|
use_cache (`bool`, *optional*, defaults to `True`):
|
|
Whether or not the model should return the last key/values attentions (not used by all models).
|
|
pretraining_tp (`int`, *optional*, defaults to `1`):
|
|
Experimental feature. Tensor parallelism rank used during pretraining with Megatron. Please refer to [this
|
|
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
|
|
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
|
issue](https://github.com/pytorch/pytorch/issues/76232). Note also that this is enabled only when
|
|
`slow_but_exact=True`.
|
|
slow_but_exact (`bool`, *optional*, defaults to `False`):
|
|
Experimental feature. Whether to use slow but exact implementation of the attention mechanism. While
|
|
merging the TP rank tensors, due to slicing operations the results may be slightly different between the
|
|
model trained on Megatron and our model. Please refer to [this
|
|
issue](https://github.com/pytorch/pytorch/issues/76232). A solution to obtain more accurate results is to
|
|
enable this feature. Enabling this will hurt the computational time of the inference. Will be probably
|
|
resolved in the future once the main model has been fine-tuned with TP_rank=1.
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import BloomConfig, BloomModel
|
|
|
|
>>> # Initializing a Bloom configuration
|
|
>>> configuration = BloomConfig()
|
|
|
|
>>> # Initializing a model (with random weights) from the configuration
|
|
>>> model = BloomModel(configuration)
|
|
|
|
>>> # Accessing the model configuration
|
|
>>> configuration = model.config
|
|
```"""
|
|
|
|
model_type = "bloom"
|
|
keys_to_ignore_at_inference = ["past_key_values"]
|
|
attribute_map = {
|
|
"num_hidden_layers": "n_layer",
|
|
"num_attention_heads": "n_head",
|
|
}
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_size=250880,
|
|
hidden_size=64,
|
|
n_layer=2,
|
|
n_head=8,
|
|
layer_norm_epsilon=1e-5,
|
|
initializer_range=0.02,
|
|
use_cache=True,
|
|
bos_token_id=1,
|
|
eos_token_id=2,
|
|
apply_residual_connection_post_layernorm=False,
|
|
hidden_dropout=0.0,
|
|
attention_dropout=0.0,
|
|
pretraining_tp=1, # TP rank used when training with megatron
|
|
slow_but_exact=False,
|
|
**kwargs,
|
|
):
|
|
self.vocab_size = vocab_size
|
|
# Backward compatibility with n_embed kwarg
|
|
n_embed = kwargs.pop("n_embed", None)
|
|
self.hidden_size = hidden_size if n_embed is None else n_embed
|
|
self.n_layer = n_layer
|
|
self.n_head = n_head
|
|
self.layer_norm_epsilon = layer_norm_epsilon
|
|
self.initializer_range = initializer_range
|
|
self.use_cache = use_cache
|
|
self.pretraining_tp = pretraining_tp
|
|
self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
|
|
self.hidden_dropout = hidden_dropout
|
|
self.attention_dropout = attention_dropout
|
|
|
|
self.bos_token_id = bos_token_id
|
|
self.eos_token_id = eos_token_id
|
|
self.slow_but_exact = slow_but_exact
|
|
|
|
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
|
|
|
|
|
class BloomOnnxConfig(OnnxConfigWithPast):
|
|
torch_onnx_minimum_version = version.parse("1.12")
|
|
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
task: str = "default",
|
|
patching_specs: List[PatchingSpec] = None,
|
|
use_past: bool = False,
|
|
):
|
|
super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past)
|
|
if not getattr(self._config, "pad_token_id", None):
|
|
# TODO: how to do that better?
|
|
self._config.pad_token_id = 0
|
|
|
|
@property
|
|
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
|
common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}})
|
|
if self.use_past:
|
|
# BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344
|
|
self.fill_with_past_key_values_(common_inputs, direction="inputs", inverted_values_shape=True)
|
|
common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"}
|
|
else:
|
|
common_inputs["attention_mask"] = {0: "batch", 1: "sequence"}
|
|
|
|
return common_inputs
|
|
|
|
@property
|
|
def num_layers(self) -> int:
|
|
return self._config.n_layer
|
|
|
|
@property
|
|
def num_attention_heads(self) -> int:
|
|
return self._config.n_head
|
|
|
|
@property
|
|
def atol_for_validation(self) -> float:
|
|
return 1e-3
|
|
|
|
def generate_dummy_inputs(
|
|
self,
|
|
tokenizer: "PreTrainedTokenizer",
|
|
batch_size: int = -1,
|
|
seq_length: int = -1,
|
|
is_pair: bool = False,
|
|
framework: Optional["TensorType"] = None,
|
|
) -> Mapping[str, Any]:
|
|
common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs(
|
|
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
|
|
)
|
|
|
|
# We need to order the input in the way they appears in the forward()
|
|
ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]})
|
|
|
|
# Need to add the past_keys
|
|
if self.use_past:
|
|
if not is_torch_available():
|
|
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
|
|
else:
|
|
import torch
|
|
|
|
batch, seqlen = common_inputs["input_ids"].shape
|
|
# Not using the same length for past_key_values
|
|
past_key_values_length = seqlen + 2
|
|
head_dim = self._config.hidden_size // self.num_attention_heads
|
|
past_key_shape = (
|
|
batch * self.num_attention_heads,
|
|
head_dim,
|
|
past_key_values_length,
|
|
)
|
|
past_value_shape = (
|
|
batch * self.num_attention_heads,
|
|
past_key_values_length,
|
|
head_dim,
|
|
)
|
|
ordered_inputs["past_key_values"] = [
|
|
(torch.zeros(past_key_shape), torch.zeros(past_value_shape)) for _ in range(self.num_layers)
|
|
]
|
|
|
|
ordered_inputs["attention_mask"] = common_inputs["attention_mask"]
|
|
if self.use_past:
|
|
mask_dtype = ordered_inputs["attention_mask"].dtype
|
|
ordered_inputs["attention_mask"] = torch.cat(
|
|
[ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
|
|
)
|
|
|
|
return ordered_inputs
|
|
|
|
@property
|
|
def default_onnx_opset(self) -> int:
|
|
return 13
|