350 lines
16 KiB
Python
350 lines
16 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 The Intel Labs Team Authors, The Microsoft Research Team Authors and HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License=, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing=, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS=,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND=, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" BridgeTower model configuration"""
|
|
|
|
import os
|
|
from typing import Union
|
|
|
|
from ...configuration_utils import PretrainedConfig
|
|
from ...utils import logging
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
from ..deprecated._archive_maps import BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
|
|
|
|
|
class BridgeTowerVisionConfig(PretrainedConfig):
|
|
r"""
|
|
This is the configuration class to store the vision configuration of a [`BridgeTowerModel`]. Instantiating a
|
|
configuration with the defaults will yield a similar configuration to that of the bridgetower-base
|
|
[BridgeTower/bridgetower-base](https://huggingface.co/BridgeTower/bridgetower-base/) architecture.
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
|
|
Args:
|
|
hidden_size (`int`, *optional*, defaults to 768):
|
|
Dimensionality of the encoder layers and the pooler layer.
|
|
num_hidden_layers (`int`, *optional*, defaults to 12):
|
|
Number of hidden layers in visual encoder model.
|
|
patch_size (`int`, *optional*, defaults to 16):
|
|
The size (resolution) of each patch.
|
|
image_size (`int`, *optional*, defaults to 288):
|
|
The size (resolution) of each image.
|
|
initializer_factor (`float`, *optional*, defaults to 1):
|
|
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
|
|
testing).
|
|
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
|
The epsilon used by the layer normalization layers.
|
|
stop_gradient (`bool`, *optional*, defaults to `False`):
|
|
Whether to stop gradient for training.
|
|
share_layernorm (`bool`, *optional*, defaults to `True`):
|
|
Whether LayerNorm layers are shared.
|
|
remove_last_layer (`bool`, *optional*, defaults to `False`):
|
|
Whether to remove the last layer from the vision encoder.
|
|
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import BridgeTowerVisionConfig
|
|
|
|
>>> # Initializing a BridgeTower BridgeTower/bridgetower-base style configuration for the vision model
|
|
>>> configuration = BridgeTowerVisionConfig()
|
|
|
|
>>> # Accessing the configuration
|
|
>>> configuration
|
|
```"""
|
|
|
|
model_type = "bridgetower_vision_model"
|
|
|
|
def __init__(
|
|
self,
|
|
hidden_size=768,
|
|
num_hidden_layers=12,
|
|
num_channels=3,
|
|
patch_size=16,
|
|
image_size=288,
|
|
initializer_factor=1,
|
|
layer_norm_eps=1e-05,
|
|
stop_gradient=False,
|
|
share_layernorm=True,
|
|
remove_last_layer=False,
|
|
**kwargs,
|
|
):
|
|
super().__init__(**kwargs)
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_channels = num_channels
|
|
self.patch_size = patch_size
|
|
self.image_size = image_size
|
|
self.initializer_factor = initializer_factor
|
|
self.layer_norm_eps = layer_norm_eps
|
|
self.stop_gradient = stop_gradient
|
|
self.share_layernorm = share_layernorm
|
|
self.remove_last_layer = remove_last_layer
|
|
|
|
@classmethod
|
|
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
|
|
|
if config_dict.get("model_type") == "bridgetower":
|
|
config_dict = config_dict["text_config"]
|
|
|
|
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
|
logger.warning(
|
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
|
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
|
)
|
|
|
|
return cls.from_dict(config_dict, **kwargs)
|
|
|
|
|
|
class BridgeTowerTextConfig(PretrainedConfig):
|
|
r"""
|
|
This is the configuration class to store the text configuration of a [`BridgeTowerModel`]. The default values here
|
|
are copied from RoBERTa. Instantiating a configuration with the defaults will yield a similar configuration to that
|
|
of the bridgetower-base [BridegTower/bridgetower-base](https://huggingface.co/BridgeTower/bridgetower-base/)
|
|
architecture.
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
|
|
Args:
|
|
vocab_size (`int`, *optional*, defaults to 50265):
|
|
Vocabulary size of the text part of the model. Defines the number of different tokens that can be
|
|
represented by the `inputs_ids` passed when calling [`BridgeTowerModel`].
|
|
hidden_size (`int`, *optional*, defaults to 768):
|
|
Dimensionality of the encoder layers and the pooler layer.
|
|
num_hidden_layers (`int`, *optional*, defaults to 12):
|
|
Number of hidden layers in the Transformer encoder.
|
|
num_attention_heads (`int`, *optional*, defaults to 12):
|
|
Number of attention heads for each attention layer in the Transformer encoder.
|
|
intermediate_size (`int`, *optional*, defaults to 3072):
|
|
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
|
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
|
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
|
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
|
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
|
The dropout ratio for the attention probabilities.
|
|
max_position_embeddings (`int`, *optional*, defaults to 514):
|
|
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
|
just in case (e.g., 512 or 1024 or 2048).
|
|
type_vocab_size (`int`, *optional*, defaults to 2):
|
|
The vocabulary size of the `token_type_ids`.
|
|
initializer_factor (`float`, *optional*, defaults to 1):
|
|
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
|
|
testing).
|
|
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
|
The epsilon used by the layer normalization layers.
|
|
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
|
|
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
|
|
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
|
|
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
|
|
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
|
|
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
|
|
is_decoder (`bool`, *optional*, defaults to `False`):
|
|
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
|
|
use_cache (`bool`, *optional*, defaults to `True`):
|
|
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
|
relevant if `config.is_decoder=True`.
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import BridgeTowerTextConfig
|
|
|
|
>>> # Initializing a BridgeTower BridgeTower/bridgetower-base style configuration for the text model
|
|
>>> configuration = BridgeTowerTextConfig()
|
|
|
|
>>> # Accessing the configuration
|
|
>>> configuration
|
|
```"""
|
|
|
|
model_type = "bridgetower_text_model"
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_size=50265,
|
|
hidden_size=768,
|
|
num_hidden_layers=12,
|
|
num_attention_heads=12,
|
|
initializer_factor=1,
|
|
intermediate_size=3072,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
max_position_embeddings=514,
|
|
type_vocab_size=1,
|
|
layer_norm_eps=1e-05,
|
|
pad_token_id=1,
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
position_embedding_type="absolute",
|
|
use_cache=True,
|
|
**kwargs,
|
|
):
|
|
super().__init__(**kwargs)
|
|
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.hidden_act = hidden_act
|
|
self.initializer_factor = initializer_factor
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.type_vocab_size = type_vocab_size
|
|
self.layer_norm_eps = layer_norm_eps
|
|
self.position_embedding_type = position_embedding_type
|
|
self.use_cache = use_cache
|
|
self.pad_token_id = pad_token_id
|
|
self.bos_token_id = bos_token_id
|
|
self.eos_token_id = eos_token_id
|
|
|
|
@classmethod
|
|
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
|
|
|
if config_dict.get("model_type") == "bridgetower":
|
|
config_dict = config_dict["text_config"]
|
|
|
|
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
|
logger.warning(
|
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
|
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
|
)
|
|
|
|
return cls.from_dict(config_dict, **kwargs)
|
|
|
|
|
|
class BridgeTowerConfig(PretrainedConfig):
|
|
r"""
|
|
This is the configuration class to store the configuration of a [`BridgeTowerModel`]. It is used to instantiate a
|
|
BridgeTower model according to the specified arguments, defining the model architecture. Instantiating a
|
|
configuration with the defaults will yield a similar configuration to that of the bridgetower-base
|
|
[BridgeTower/bridgetower-base](https://huggingface.co/BridgeTower/bridgetower-base/) architecture.
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
|
|
Args:
|
|
share_cross_modal_transformer_layers (`bool`, *optional*, defaults to `True`):
|
|
Whether cross modal transformer layers are shared.
|
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
|
The non-linear activation function (function or string) in the encoder and pooler.
|
|
hidden_size (`int`, *optional*, defaults to 768):
|
|
Dimensionality of the encoder layers and the pooler layer.
|
|
initializer_factor (`float`, *optional*, defaults to 1):
|
|
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
|
|
testing).
|
|
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
|
The epsilon used by the layer normalization layers.
|
|
share_link_tower_layers (`bool`, *optional*, defaults to `False`):
|
|
Whether the bride/link tower layers are shared.
|
|
link_tower_type (`str`, *optional*, defaults to `"add"`):
|
|
Type of the bridge/link layer.
|
|
num_attention_heads (`int`, *optional*, defaults to 12):
|
|
Number of attention heads for each attention layer in the Transformer encoder.
|
|
num_hidden_layers (`int`, *optional*, defaults to 6):
|
|
Number of hidden layers in the Transformer encoder.
|
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
|
Whether to tie input and output embeddings.
|
|
init_layernorm_from_vision_encoder (`bool`, *optional*, defaults to `False`):
|
|
Whether to init LayerNorm from the vision encoder.
|
|
text_config (`dict`, *optional*):
|
|
Dictionary of configuration options used to initialize [`BridgeTowerTextConfig`].
|
|
vision_config (`dict`, *optional*):
|
|
Dictionary of configuration options used to initialize [`BridgeTowerVisionConfig`].
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import BridgeTowerModel, BridgeTowerConfig
|
|
|
|
>>> # Initializing a BridgeTower BridgeTower/bridgetower-base style configuration
|
|
>>> configuration = BridgeTowerConfig()
|
|
|
|
>>> # Initializing a model from the BridgeTower/bridgetower-base style configuration
|
|
>>> model = BridgeTowerModel(configuration)
|
|
|
|
>>> # Accessing the model configuration
|
|
>>> configuration = model.config
|
|
```"""
|
|
|
|
model_type = "bridgetower"
|
|
|
|
def __init__(
|
|
self,
|
|
share_cross_modal_transformer_layers=True,
|
|
hidden_act="gelu",
|
|
hidden_size=768,
|
|
initializer_factor=1,
|
|
layer_norm_eps=1e-05,
|
|
share_link_tower_layers=False,
|
|
link_tower_type="add",
|
|
num_attention_heads=12,
|
|
num_hidden_layers=6,
|
|
tie_word_embeddings=False,
|
|
init_layernorm_from_vision_encoder=False,
|
|
text_config=None,
|
|
vision_config=None,
|
|
**kwargs,
|
|
):
|
|
# TODO: remove this once the Hub files are updated.
|
|
_ = kwargs.pop("text_config_dict", None)
|
|
_ = kwargs.pop("vision_config_dict", None)
|
|
|
|
super().__init__(**kwargs)
|
|
self.share_cross_modal_transformer_layers = share_cross_modal_transformer_layers
|
|
self.hidden_act = hidden_act
|
|
self.hidden_size = hidden_size
|
|
self.initializer_factor = initializer_factor
|
|
self.layer_norm_eps = layer_norm_eps
|
|
self.share_link_tower_layers = share_link_tower_layers
|
|
self.link_tower_type = link_tower_type
|
|
self.num_attention_heads = num_attention_heads
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.tie_word_embeddings = tie_word_embeddings
|
|
self.init_layernorm_from_vision_encoder = init_layernorm_from_vision_encoder
|
|
|
|
if text_config is None:
|
|
text_config = {}
|
|
logger.info("`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.")
|
|
|
|
if vision_config is None:
|
|
vision_config = {}
|
|
logger.info("`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.")
|
|
|
|
self.text_config = BridgeTowerTextConfig(**text_config)
|
|
self.vision_config = BridgeTowerVisionConfig(**vision_config)
|
|
|
|
@classmethod
|
|
def from_text_vision_configs(
|
|
cls, text_config: BridgeTowerTextConfig, vision_config: BridgeTowerVisionConfig, **kwargs
|
|
):
|
|
r"""
|
|
Instantiate a [`BridgeTowerConfig`] (or a derived class) from BridgeTower text model configuration. Returns:
|
|
[`BridgeTowerConfig`]: An instance of a configuration object
|
|
"""
|
|
|
|
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
|