457 lines
20 KiB
Python
457 lines
20 KiB
Python
# coding=utf-8
|
|
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" CLIP model configuration"""
|
|
|
|
import os
|
|
from collections import OrderedDict
|
|
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from ...processing_utils import ProcessorMixin
|
|
from ...utils import TensorType
|
|
|
|
from ...configuration_utils import PretrainedConfig
|
|
from ...onnx import OnnxConfig
|
|
from ...utils import logging
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
from ..deprecated._archive_maps import CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
|
|
|
|
|
class CLIPTextConfig(PretrainedConfig):
|
|
r"""
|
|
This is the configuration class to store the configuration of a [`CLIPTextModel`]. It is used to instantiate a CLIP
|
|
text encoder according to the specified arguments, defining the model architecture. Instantiating a configuration
|
|
with the defaults will yield a similar configuration to that of the text encoder of the CLIP
|
|
[openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture.
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
|
|
Args:
|
|
vocab_size (`int`, *optional*, defaults to 49408):
|
|
Vocabulary size of the CLIP text model. Defines the number of different tokens that can be represented by
|
|
the `inputs_ids` passed when calling [`CLIPModel`].
|
|
hidden_size (`int`, *optional*, defaults to 512):
|
|
Dimensionality of the encoder layers and the pooler layer.
|
|
intermediate_size (`int`, *optional*, defaults to 2048):
|
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
|
projection_dim (`int`, *optional*, defaults to 512):
|
|
Dimentionality of text and vision projection layers.
|
|
num_hidden_layers (`int`, *optional*, defaults to 12):
|
|
Number of hidden layers in the Transformer encoder.
|
|
num_attention_heads (`int`, *optional*, defaults to 8):
|
|
Number of attention heads for each attention layer in the Transformer encoder.
|
|
max_position_embeddings (`int`, *optional*, defaults to 77):
|
|
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
|
just in case (e.g., 512 or 1024 or 2048).
|
|
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
|
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
|
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
|
|
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
|
The epsilon used by the layer normalization layers.
|
|
attention_dropout (`float`, *optional*, defaults to 0.0):
|
|
The dropout ratio for the attention probabilities.
|
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
|
initializer_factor (`float`, *optional*, defaults to 1.0):
|
|
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
|
|
testing).
|
|
pad_token_id (`int`, *optional*, defaults to 1):
|
|
Padding token id.
|
|
bos_token_id (`int`, *optional*, defaults to 49406):
|
|
Beginning of stream token id.
|
|
eos_token_id (`int`, *optional*, defaults to 49407):
|
|
End of stream token id.
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import CLIPTextConfig, CLIPTextModel
|
|
|
|
>>> # Initializing a CLIPTextConfig with openai/clip-vit-base-patch32 style configuration
|
|
>>> configuration = CLIPTextConfig()
|
|
|
|
>>> # Initializing a CLIPTextModel (with random weights) from the openai/clip-vit-base-patch32 style configuration
|
|
>>> model = CLIPTextModel(configuration)
|
|
|
|
>>> # Accessing the model configuration
|
|
>>> configuration = model.config
|
|
```"""
|
|
|
|
model_type = "clip_text_model"
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_size=49408,
|
|
hidden_size=512,
|
|
intermediate_size=2048,
|
|
projection_dim=512,
|
|
num_hidden_layers=12,
|
|
num_attention_heads=8,
|
|
max_position_embeddings=77,
|
|
hidden_act="quick_gelu",
|
|
layer_norm_eps=1e-5,
|
|
attention_dropout=0.0,
|
|
initializer_range=0.02,
|
|
initializer_factor=1.0,
|
|
# This differs from `CLIPTokenizer`'s default and from openai/clip
|
|
# See https://github.com/huggingface/transformers/pull/24773#issuecomment-1632287538
|
|
pad_token_id=1,
|
|
bos_token_id=49406,
|
|
eos_token_id=49407,
|
|
**kwargs,
|
|
):
|
|
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
|
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.intermediate_size = intermediate_size
|
|
self.projection_dim = projection_dim
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.layer_norm_eps = layer_norm_eps
|
|
self.hidden_act = hidden_act
|
|
self.initializer_range = initializer_range
|
|
self.initializer_factor = initializer_factor
|
|
self.attention_dropout = attention_dropout
|
|
|
|
@classmethod
|
|
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
|
cls._set_token_in_kwargs(kwargs)
|
|
|
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
|
|
|
# get the text config dict if we are loading from CLIPConfig
|
|
if config_dict.get("model_type") == "clip":
|
|
config_dict = config_dict["text_config"]
|
|
|
|
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
|
logger.warning(
|
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
|
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
|
)
|
|
|
|
return cls.from_dict(config_dict, **kwargs)
|
|
|
|
|
|
class CLIPVisionConfig(PretrainedConfig):
|
|
r"""
|
|
This is the configuration class to store the configuration of a [`CLIPVisionModel`]. It is used to instantiate a
|
|
CLIP vision encoder according to the specified arguments, defining the model architecture. Instantiating a
|
|
configuration with the defaults will yield a similar configuration to that of the vision encoder of the CLIP
|
|
[openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture.
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
|
|
Args:
|
|
hidden_size (`int`, *optional*, defaults to 768):
|
|
Dimensionality of the encoder layers and the pooler layer.
|
|
intermediate_size (`int`, *optional*, defaults to 3072):
|
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
|
projection_dim (`int`, *optional*, defaults to 512):
|
|
Dimentionality of text and vision projection layers.
|
|
num_hidden_layers (`int`, *optional*, defaults to 12):
|
|
Number of hidden layers in the Transformer encoder.
|
|
num_attention_heads (`int`, *optional*, defaults to 12):
|
|
Number of attention heads for each attention layer in the Transformer encoder.
|
|
num_channels (`int`, *optional*, defaults to 3):
|
|
The number of input channels.
|
|
image_size (`int`, *optional*, defaults to 224):
|
|
The size (resolution) of each image.
|
|
patch_size (`int`, *optional*, defaults to 32):
|
|
The size (resolution) of each patch.
|
|
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
|
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
|
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
|
|
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
|
The epsilon used by the layer normalization layers.
|
|
attention_dropout (`float`, *optional*, defaults to 0.0):
|
|
The dropout ratio for the attention probabilities.
|
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
|
initializer_factor (`float`, *optional*, defaults to 1.0):
|
|
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
|
|
testing).
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import CLIPVisionConfig, CLIPVisionModel
|
|
|
|
>>> # Initializing a CLIPVisionConfig with openai/clip-vit-base-patch32 style configuration
|
|
>>> configuration = CLIPVisionConfig()
|
|
|
|
>>> # Initializing a CLIPVisionModel (with random weights) from the openai/clip-vit-base-patch32 style configuration
|
|
>>> model = CLIPVisionModel(configuration)
|
|
|
|
>>> # Accessing the model configuration
|
|
>>> configuration = model.config
|
|
```"""
|
|
|
|
model_type = "clip_vision_model"
|
|
|
|
def __init__(
|
|
self,
|
|
hidden_size=768,
|
|
intermediate_size=3072,
|
|
projection_dim=512,
|
|
num_hidden_layers=12,
|
|
num_attention_heads=12,
|
|
num_channels=3,
|
|
image_size=224,
|
|
patch_size=32,
|
|
hidden_act="quick_gelu",
|
|
layer_norm_eps=1e-5,
|
|
attention_dropout=0.0,
|
|
initializer_range=0.02,
|
|
initializer_factor=1.0,
|
|
**kwargs,
|
|
):
|
|
super().__init__(**kwargs)
|
|
|
|
self.hidden_size = hidden_size
|
|
self.intermediate_size = intermediate_size
|
|
self.projection_dim = projection_dim
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.num_channels = num_channels
|
|
self.patch_size = patch_size
|
|
self.image_size = image_size
|
|
self.initializer_range = initializer_range
|
|
self.initializer_factor = initializer_factor
|
|
self.attention_dropout = attention_dropout
|
|
self.layer_norm_eps = layer_norm_eps
|
|
self.hidden_act = hidden_act
|
|
|
|
@classmethod
|
|
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
|
cls._set_token_in_kwargs(kwargs)
|
|
|
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
|
|
|
# get the vision config dict if we are loading from CLIPConfig
|
|
if config_dict.get("model_type") == "clip":
|
|
config_dict = config_dict["vision_config"]
|
|
|
|
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
|
logger.warning(
|
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
|
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
|
)
|
|
|
|
return cls.from_dict(config_dict, **kwargs)
|
|
|
|
|
|
class CLIPConfig(PretrainedConfig):
|
|
r"""
|
|
[`CLIPConfig`] is the configuration class to store the configuration of a [`CLIPModel`]. It is used to instantiate
|
|
a CLIP model according to the specified arguments, defining the text model and vision model configs. Instantiating
|
|
a configuration with the defaults will yield a similar configuration to that of the CLIP
|
|
[openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture.
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
|
|
Args:
|
|
text_config (`dict`, *optional*):
|
|
Dictionary of configuration options used to initialize [`CLIPTextConfig`].
|
|
vision_config (`dict`, *optional*):
|
|
Dictionary of configuration options used to initialize [`CLIPVisionConfig`].
|
|
projection_dim (`int`, *optional*, defaults to 512):
|
|
Dimentionality of text and vision projection layers.
|
|
logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
|
|
The inital value of the *logit_scale* paramter. Default is used as per the original CLIP implementation.
|
|
kwargs (*optional*):
|
|
Dictionary of keyword arguments.
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import CLIPConfig, CLIPModel
|
|
|
|
>>> # Initializing a CLIPConfig with openai/clip-vit-base-patch32 style configuration
|
|
>>> configuration = CLIPConfig()
|
|
|
|
>>> # Initializing a CLIPModel (with random weights) from the openai/clip-vit-base-patch32 style configuration
|
|
>>> model = CLIPModel(configuration)
|
|
|
|
>>> # Accessing the model configuration
|
|
>>> configuration = model.config
|
|
|
|
>>> # We can also initialize a CLIPConfig from a CLIPTextConfig and a CLIPVisionConfig
|
|
>>> from transformers import CLIPTextConfig, CLIPVisionConfig
|
|
|
|
>>> # Initializing a CLIPText and CLIPVision configuration
|
|
>>> config_text = CLIPTextConfig()
|
|
>>> config_vision = CLIPVisionConfig()
|
|
|
|
>>> config = CLIPConfig.from_text_vision_configs(config_text, config_vision)
|
|
```"""
|
|
|
|
model_type = "clip"
|
|
|
|
def __init__(
|
|
self, text_config=None, vision_config=None, projection_dim=512, logit_scale_init_value=2.6592, **kwargs
|
|
):
|
|
# If `_config_dict` exist, we use them for the backward compatibility.
|
|
# We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot
|
|
# of confusion!).
|
|
text_config_dict = kwargs.pop("text_config_dict", None)
|
|
vision_config_dict = kwargs.pop("vision_config_dict", None)
|
|
|
|
super().__init__(**kwargs)
|
|
|
|
# Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
|
|
# `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
|
|
# cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
|
|
if text_config_dict is not None:
|
|
if text_config is None:
|
|
text_config = {}
|
|
|
|
# This is the complete result when using `text_config_dict`.
|
|
_text_config_dict = CLIPTextConfig(**text_config_dict).to_dict()
|
|
|
|
# Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
|
|
for key, value in _text_config_dict.items():
|
|
if key in text_config and value != text_config[key] and key not in ["transformers_version"]:
|
|
# If specified in `text_config_dict`
|
|
if key in text_config_dict:
|
|
message = (
|
|
f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. "
|
|
f'The value `text_config_dict["{key}"]` will be used instead.'
|
|
)
|
|
# If inferred from default argument values (just to be super careful)
|
|
else:
|
|
message = (
|
|
f"`text_config_dict` is provided which will be used to initialize `CLIPTextConfig`. The "
|
|
f'value `text_config["{key}"]` will be overriden.'
|
|
)
|
|
logger.info(message)
|
|
|
|
# Update all values in `text_config` with the ones in `_text_config_dict`.
|
|
text_config.update(_text_config_dict)
|
|
|
|
if vision_config_dict is not None:
|
|
if vision_config is None:
|
|
vision_config = {}
|
|
|
|
# This is the complete result when using `vision_config_dict`.
|
|
_vision_config_dict = CLIPVisionConfig(**vision_config_dict).to_dict()
|
|
# convert keys to string instead of integer
|
|
if "id2label" in _vision_config_dict:
|
|
_vision_config_dict["id2label"] = {
|
|
str(key): value for key, value in _vision_config_dict["id2label"].items()
|
|
}
|
|
|
|
# Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different.
|
|
for key, value in _vision_config_dict.items():
|
|
if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]:
|
|
# If specified in `vision_config_dict`
|
|
if key in vision_config_dict:
|
|
message = (
|
|
f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different "
|
|
f'values. The value `vision_config_dict["{key}"]` will be used instead.'
|
|
)
|
|
# If inferred from default argument values (just to be super careful)
|
|
else:
|
|
message = (
|
|
f"`vision_config_dict` is provided which will be used to initialize `CLIPVisionConfig`. "
|
|
f'The value `vision_config["{key}"]` will be overriden.'
|
|
)
|
|
logger.info(message)
|
|
|
|
# Update all values in `vision_config` with the ones in `_vision_config_dict`.
|
|
vision_config.update(_vision_config_dict)
|
|
|
|
if text_config is None:
|
|
text_config = {}
|
|
logger.info("`text_config` is `None`. Initializing the `CLIPTextConfig` with default values.")
|
|
|
|
if vision_config is None:
|
|
vision_config = {}
|
|
logger.info("`vision_config` is `None`. initializing the `CLIPVisionConfig` with default values.")
|
|
|
|
self.text_config = CLIPTextConfig(**text_config)
|
|
self.vision_config = CLIPVisionConfig(**vision_config)
|
|
|
|
self.projection_dim = projection_dim
|
|
self.logit_scale_init_value = logit_scale_init_value
|
|
self.initializer_factor = 1.0
|
|
|
|
@classmethod
|
|
def from_text_vision_configs(cls, text_config: CLIPTextConfig, vision_config: CLIPVisionConfig, **kwargs):
|
|
r"""
|
|
Instantiate a [`CLIPConfig`] (or a derived class) from clip text model configuration and clip vision model
|
|
configuration.
|
|
|
|
Returns:
|
|
[`CLIPConfig`]: An instance of a configuration object
|
|
"""
|
|
|
|
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
|
|
|
|
|
|
class CLIPOnnxConfig(OnnxConfig):
|
|
@property
|
|
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
|
return OrderedDict(
|
|
[
|
|
("input_ids", {0: "batch", 1: "sequence"}),
|
|
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
|
|
("attention_mask", {0: "batch", 1: "sequence"}),
|
|
]
|
|
)
|
|
|
|
@property
|
|
def outputs(self) -> Mapping[str, Mapping[int, str]]:
|
|
return OrderedDict(
|
|
[
|
|
("logits_per_image", {0: "batch"}),
|
|
("logits_per_text", {0: "batch"}),
|
|
("text_embeds", {0: "batch"}),
|
|
("image_embeds", {0: "batch"}),
|
|
]
|
|
)
|
|
|
|
@property
|
|
def atol_for_validation(self) -> float:
|
|
return 1e-4
|
|
|
|
def generate_dummy_inputs(
|
|
self,
|
|
processor: "ProcessorMixin",
|
|
batch_size: int = -1,
|
|
seq_length: int = -1,
|
|
framework: Optional["TensorType"] = None,
|
|
) -> Mapping[str, Any]:
|
|
text_input_dict = super().generate_dummy_inputs(
|
|
processor.tokenizer, batch_size=batch_size, seq_length=seq_length, framework=framework
|
|
)
|
|
image_input_dict = super().generate_dummy_inputs(
|
|
processor.image_processor, batch_size=batch_size, framework=framework
|
|
)
|
|
return {**text_input_dict, **image_input_dict}
|
|
|
|
@property
|
|
def default_onnx_opset(self) -> int:
|
|
return 14
|