176 lines
7.9 KiB
Python
176 lines
7.9 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" DINOv2 model configuration"""
|
|
|
|
from collections import OrderedDict
|
|
from typing import Mapping
|
|
|
|
from packaging import version
|
|
|
|
from ...configuration_utils import PretrainedConfig
|
|
from ...onnx import OnnxConfig
|
|
from ...utils import logging
|
|
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
from ..deprecated._archive_maps import DINOV2_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
|
|
|
|
|
class Dinov2Config(BackboneConfigMixin, PretrainedConfig):
|
|
r"""
|
|
This is the configuration class to store the configuration of a [`Dinov2Model`]. It is used to instantiate an
|
|
Dinov2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
|
with the defaults will yield a similar configuration to that of the Dinov2
|
|
[google/dinov2-base-patch16-224](https://huggingface.co/google/dinov2-base-patch16-224) architecture.
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
|
|
Args:
|
|
hidden_size (`int`, *optional*, defaults to 768):
|
|
Dimensionality of the encoder layers and the pooler layer.
|
|
num_hidden_layers (`int`, *optional*, defaults to 12):
|
|
Number of hidden layers in the Transformer encoder.
|
|
num_attention_heads (`int`, *optional*, defaults to 12):
|
|
Number of attention heads for each attention layer in the Transformer encoder.
|
|
mlp_ratio (`int`, *optional*, defaults to 4):
|
|
Ratio of the hidden size of the MLPs relative to the `hidden_size`.
|
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
|
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
|
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
|
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
|
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
|
|
The dropout ratio for the attention probabilities.
|
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
|
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
|
|
The epsilon used by the layer normalization layers.
|
|
image_size (`int`, *optional*, defaults to 224):
|
|
The size (resolution) of each image.
|
|
patch_size (`int`, *optional*, defaults to 16):
|
|
The size (resolution) of each patch.
|
|
num_channels (`int`, *optional*, defaults to 3):
|
|
The number of input channels.
|
|
qkv_bias (`bool`, *optional*, defaults to `True`):
|
|
Whether to add a bias to the queries, keys and values.
|
|
layerscale_value (`float`, *optional*, defaults to 1.0):
|
|
Initial value to use for layer scale.
|
|
drop_path_rate (`float`, *optional*, defaults to 0.0):
|
|
Stochastic depth rate per sample (when applied in the main path of residual layers).
|
|
use_swiglu_ffn (`bool`, *optional*, defaults to `False`):
|
|
Whether to use the SwiGLU feedforward neural network.
|
|
out_features (`List[str]`, *optional*):
|
|
If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
|
|
(depending on how many stages the model has). If unset and `out_indices` is set, will default to the
|
|
corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
|
|
same order as defined in the `stage_names` attribute.
|
|
out_indices (`List[int]`, *optional*):
|
|
If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
|
|
many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
|
|
If unset and `out_features` is unset, will default to the last stage. Must be in the
|
|
same order as defined in the `stage_names` attribute.
|
|
apply_layernorm (`bool`, *optional*, defaults to `True`):
|
|
Whether to apply layer normalization to the feature maps in case the model is used as backbone.
|
|
reshape_hidden_states (`bool`, *optional*, defaults to `True`):
|
|
Whether to reshape the feature maps to 4D tensors of shape `(batch_size, hidden_size, height, width)` in
|
|
case the model is used as backbone. If `False`, the feature maps will be 3D tensors of shape `(batch_size,
|
|
seq_len, hidden_size)`.
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import Dinov2Config, Dinov2Model
|
|
|
|
>>> # Initializing a Dinov2 dinov2-base-patch16-224 style configuration
|
|
>>> configuration = Dinov2Config()
|
|
|
|
>>> # Initializing a model (with random weights) from the dinov2-base-patch16-224 style configuration
|
|
>>> model = Dinov2Model(configuration)
|
|
|
|
>>> # Accessing the model configuration
|
|
>>> configuration = model.config
|
|
```"""
|
|
|
|
model_type = "dinov2"
|
|
|
|
def __init__(
|
|
self,
|
|
hidden_size=768,
|
|
num_hidden_layers=12,
|
|
num_attention_heads=12,
|
|
mlp_ratio=4,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.0,
|
|
attention_probs_dropout_prob=0.0,
|
|
initializer_range=0.02,
|
|
layer_norm_eps=1e-6,
|
|
image_size=224,
|
|
patch_size=16,
|
|
num_channels=3,
|
|
qkv_bias=True,
|
|
layerscale_value=1.0,
|
|
drop_path_rate=0.0,
|
|
use_swiglu_ffn=False,
|
|
out_features=None,
|
|
out_indices=None,
|
|
apply_layernorm=True,
|
|
reshape_hidden_states=True,
|
|
**kwargs,
|
|
):
|
|
super().__init__(**kwargs)
|
|
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.mlp_ratio = mlp_ratio
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.initializer_range = initializer_range
|
|
self.layer_norm_eps = layer_norm_eps
|
|
self.image_size = image_size
|
|
self.patch_size = patch_size
|
|
self.num_channels = num_channels
|
|
self.qkv_bias = qkv_bias
|
|
self.layerscale_value = layerscale_value
|
|
self.drop_path_rate = drop_path_rate
|
|
self.use_swiglu_ffn = use_swiglu_ffn
|
|
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, num_hidden_layers + 1)]
|
|
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
|
|
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
|
|
)
|
|
self.apply_layernorm = apply_layernorm
|
|
self.reshape_hidden_states = reshape_hidden_states
|
|
|
|
|
|
class Dinov2OnnxConfig(OnnxConfig):
|
|
torch_onnx_minimum_version = version.parse("1.11")
|
|
|
|
@property
|
|
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
|
return OrderedDict(
|
|
[
|
|
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
|
|
]
|
|
)
|
|
|
|
@property
|
|
def atol_for_validation(self) -> float:
|
|
return 1e-4
|