200 lines
8.6 KiB
Python
200 lines
8.6 KiB
Python
# coding=utf-8
|
|
# Copyright 2021 The HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" OpenAI ImageGPT configuration"""
|
|
|
|
from collections import OrderedDict
|
|
from typing import TYPE_CHECKING, Any, Mapping, Optional
|
|
|
|
from ...configuration_utils import PretrainedConfig
|
|
from ...onnx import OnnxConfig
|
|
from ...utils import logging
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from ... import FeatureExtractionMixin, TensorType
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
from ..deprecated._archive_maps import IMAGEGPT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
|
|
|
|
|
class ImageGPTConfig(PretrainedConfig):
|
|
"""
|
|
This is the configuration class to store the configuration of a [`ImageGPTModel`] or a [`TFImageGPTModel`]. It is
|
|
used to instantiate a GPT-2 model according to the specified arguments, defining the model architecture.
|
|
Instantiating a configuration with the defaults will yield a similar configuration to that of the ImageGPT
|
|
[openai/imagegpt-small](https://huggingface.co/openai/imagegpt-small) architecture.
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
|
|
|
|
Args:
|
|
vocab_size (`int`, *optional*, defaults to 512):
|
|
Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
|
|
`inputs_ids` passed when calling [`ImageGPTModel`] or [`TFImageGPTModel`].
|
|
n_positions (`int`, *optional*, defaults to 32*32):
|
|
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
|
just in case (e.g., 512 or 1024 or 2048).
|
|
n_embd (`int`, *optional*, defaults to 512):
|
|
Dimensionality of the embeddings and hidden states.
|
|
n_layer (`int`, *optional*, defaults to 24):
|
|
Number of hidden layers in the Transformer encoder.
|
|
n_head (`int`, *optional*, defaults to 8):
|
|
Number of attention heads for each attention layer in the Transformer encoder.
|
|
n_inner (`int`, *optional*, defaults to None):
|
|
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
|
|
activation_function (`str`, *optional*, defaults to `"quick_gelu"`):
|
|
Activation function (can be one of the activation functions defined in src/transformers/activations.py).
|
|
Defaults to "quick_gelu".
|
|
resid_pdrop (`float`, *optional*, defaults to 0.1):
|
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
|
embd_pdrop (`int`, *optional*, defaults to 0.1):
|
|
The dropout ratio for the embeddings.
|
|
attn_pdrop (`float`, *optional*, defaults to 0.1):
|
|
The dropout ratio for the attention.
|
|
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
|
|
The epsilon to use in the layer normalization layers.
|
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
|
scale_attn_weights (`bool`, *optional*, defaults to `True`):
|
|
Scale attention weights by dividing by sqrt(hidden_size)..
|
|
use_cache (`bool`, *optional*, defaults to `True`):
|
|
Whether or not the model should return the last key/values attentions (not used by all models).
|
|
scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to `False`):
|
|
Whether to additionally scale attention weights by `1 / layer_idx + 1`.
|
|
reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`):
|
|
Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention
|
|
dot-product/softmax to float() when training with mixed precision.
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import ImageGPTConfig, ImageGPTModel
|
|
|
|
>>> # Initializing a ImageGPT configuration
|
|
>>> configuration = ImageGPTConfig()
|
|
|
|
>>> # Initializing a model (with random weights) from the configuration
|
|
>>> model = ImageGPTModel(configuration)
|
|
|
|
>>> # Accessing the model configuration
|
|
>>> configuration = model.config
|
|
```"""
|
|
|
|
model_type = "imagegpt"
|
|
keys_to_ignore_at_inference = ["past_key_values"]
|
|
attribute_map = {
|
|
"hidden_size": "n_embd",
|
|
"max_position_embeddings": "n_positions",
|
|
"num_attention_heads": "n_head",
|
|
"num_hidden_layers": "n_layer",
|
|
}
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_size=512 + 1, # add one for start of sentence (sos) token
|
|
n_positions=32 * 32,
|
|
n_embd=512,
|
|
n_layer=24,
|
|
n_head=8,
|
|
n_inner=None,
|
|
activation_function="quick_gelu",
|
|
resid_pdrop=0.1,
|
|
embd_pdrop=0.1,
|
|
attn_pdrop=0.1,
|
|
layer_norm_epsilon=1e-5,
|
|
initializer_range=0.02,
|
|
scale_attn_weights=True,
|
|
use_cache=True,
|
|
tie_word_embeddings=False,
|
|
scale_attn_by_inverse_layer_idx=False,
|
|
reorder_and_upcast_attn=False,
|
|
**kwargs,
|
|
):
|
|
self.vocab_size = vocab_size
|
|
self.n_positions = n_positions
|
|
self.n_embd = n_embd
|
|
self.n_layer = n_layer
|
|
self.n_head = n_head
|
|
self.n_inner = n_inner
|
|
self.activation_function = activation_function
|
|
self.resid_pdrop = resid_pdrop
|
|
self.embd_pdrop = embd_pdrop
|
|
self.attn_pdrop = attn_pdrop
|
|
self.layer_norm_epsilon = layer_norm_epsilon
|
|
self.initializer_range = initializer_range
|
|
self.scale_attn_weights = scale_attn_weights
|
|
self.use_cache = use_cache
|
|
self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx
|
|
self.reorder_and_upcast_attn = reorder_and_upcast_attn
|
|
self.tie_word_embeddings = tie_word_embeddings
|
|
|
|
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
|
|
|
|
|
|
class ImageGPTOnnxConfig(OnnxConfig):
|
|
@property
|
|
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
|
return OrderedDict(
|
|
[
|
|
("input_ids", {0: "batch", 1: "sequence"}),
|
|
]
|
|
)
|
|
|
|
def generate_dummy_inputs(
|
|
self,
|
|
preprocessor: "FeatureExtractionMixin",
|
|
batch_size: int = 1,
|
|
seq_length: int = -1,
|
|
is_pair: bool = False,
|
|
framework: Optional["TensorType"] = None,
|
|
num_channels: int = 3,
|
|
image_width: int = 32,
|
|
image_height: int = 32,
|
|
) -> Mapping[str, Any]:
|
|
"""
|
|
Generate inputs to provide to the ONNX exporter for the specific framework
|
|
|
|
Args:
|
|
preprocessor ([`PreTrainedTokenizerBase`] or [`FeatureExtractionMixin`]):
|
|
The preprocessor associated with this model configuration.
|
|
batch_size (`int`, *optional*, defaults to -1):
|
|
The batch size to export the model for (-1 means dynamic axis).
|
|
num_choices (`int`, *optional*, defaults to -1):
|
|
The number of candidate answers provided for multiple choice task (-1 means dynamic axis).
|
|
seq_length (`int`, *optional*, defaults to -1):
|
|
The sequence length to export the model for (-1 means dynamic axis).
|
|
is_pair (`bool`, *optional*, defaults to `False`):
|
|
Indicate if the input is a pair (sentence 1, sentence 2)
|
|
framework (`TensorType`, *optional*, defaults to `None`):
|
|
The framework (PyTorch or TensorFlow) that the tokenizer will generate tensors for.
|
|
num_channels (`int`, *optional*, defaults to 3):
|
|
The number of channels of the generated images.
|
|
image_width (`int`, *optional*, defaults to 40):
|
|
The width of the generated images.
|
|
image_height (`int`, *optional*, defaults to 40):
|
|
The height of the generated images.
|
|
|
|
Returns:
|
|
Mapping[str, Tensor] holding the kwargs to provide to the model's forward function
|
|
"""
|
|
|
|
input_image = self._generate_dummy_images(batch_size, num_channels, image_height, image_width)
|
|
inputs = dict(preprocessor(images=input_image, return_tensors=framework))
|
|
|
|
return inputs
|