280 lines
12 KiB
Python
280 lines
12 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 The HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Convert Jukebox checkpoints"""
|
|
|
|
import argparse
|
|
import json
|
|
import os
|
|
from pathlib import Path
|
|
|
|
import requests
|
|
import torch
|
|
|
|
from transformers import JukeboxConfig, JukeboxModel
|
|
from transformers.utils import logging
|
|
|
|
|
|
logging.set_verbosity_info()
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
PREFIX = "https://openaipublic.azureedge.net/jukebox/models/"
|
|
MODEL_MAPPING = {
|
|
"jukebox-1b-lyrics": [
|
|
"5b/vqvae.pth.tar",
|
|
"5b/prior_level_0.pth.tar",
|
|
"5b/prior_level_1.pth.tar",
|
|
"1b_lyrics/prior_level_2.pth.tar",
|
|
],
|
|
"jukebox-5b-lyrics": [
|
|
"5b/vqvae.pth.tar",
|
|
"5b/prior_level_0.pth.tar",
|
|
"5b/prior_level_1.pth.tar",
|
|
"5b_lyrics/prior_level_2.pth.tar",
|
|
],
|
|
}
|
|
|
|
|
|
def replace_key(key):
|
|
if key.endswith(".model.1.bias") and len(key.split(".")) > 10:
|
|
key = key.replace(".model.1.bias", ".conv1d_1.bias")
|
|
elif key.endswith(".model.1.weight") and len(key.split(".")) > 10:
|
|
key = key.replace(".model.1.weight", ".conv1d_1.weight")
|
|
elif key.endswith(".model.3.bias") and len(key.split(".")) > 10:
|
|
key = key.replace(".model.3.bias", ".conv1d_2.bias")
|
|
elif key.endswith(".model.3.weight") and len(key.split(".")) > 10:
|
|
key = key.replace(".model.3.weight", ".conv1d_2.weight")
|
|
|
|
if "conditioner_blocks.0." in key:
|
|
key = key.replace("conditioner_blocks.0", "conditioner_blocks")
|
|
|
|
if "prime_prior" in key:
|
|
key = key.replace("prime_prior", "encoder")
|
|
|
|
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
|
|
key = key.replace(".emb.", ".")
|
|
|
|
if key.endswith("k"): # replace vqvae.X.k with vqvae.X.codebook
|
|
return key.replace(".k", ".codebook")
|
|
if "y_emb." in key:
|
|
return key.replace("y_emb.", "metadata_embedding.")
|
|
|
|
if "x_emb.emb." in key:
|
|
key = key.replace("0.x_emb.emb", "embed_tokens")
|
|
|
|
if "prime_state_ln" in key:
|
|
return key.replace("prime_state_ln", "encoder.final_layer_norm")
|
|
if ".ln" in key:
|
|
return key.replace(".ln", ".layer_norm")
|
|
if "_ln" in key:
|
|
return key.replace("_ln", "_layer_norm")
|
|
|
|
if "prime_state_proj" in key:
|
|
return key.replace("prime_state_proj", "encoder.proj_in")
|
|
if "prime_x_out" in key:
|
|
return key.replace("prime_x_out", "encoder.lm_head")
|
|
if "prior.x_out" in key:
|
|
return key.replace("x_out", "fc_proj_out")
|
|
if "x_emb" in key:
|
|
return key.replace("x_emb", "embed_tokens")
|
|
|
|
return key
|
|
|
|
|
|
def fix_jukebox_keys(state_dict, model_state_dict, key_prefix, mapping):
|
|
new_dict = {}
|
|
import re
|
|
|
|
re_encoder_block_conv_in = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)")
|
|
re_encoder_block_resnet = re.compile(
|
|
r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)"
|
|
)
|
|
re_encoder_block_proj_out = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)")
|
|
|
|
re_decoder_block_conv_out = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)")
|
|
re_decoder_block_resnet = re.compile(
|
|
r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)"
|
|
)
|
|
re_decoder_block_proj_in = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)")
|
|
|
|
re_prior_cond_conv_out = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)")
|
|
re_prior_cond_resnet = re.compile(
|
|
r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)"
|
|
)
|
|
re_prior_cond_proj_in = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)")
|
|
|
|
for original_key, value in state_dict.items():
|
|
# rename vqvae.encoder keys
|
|
if re_encoder_block_conv_in.fullmatch(original_key):
|
|
regex_match = re_encoder_block_conv_in.match(original_key)
|
|
groups = regex_match.groups()
|
|
block_index = int(groups[2]) * 2 + int(groups[3])
|
|
re_new_key = f"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}"
|
|
key = re_encoder_block_conv_in.sub(re_new_key, original_key)
|
|
|
|
elif re_encoder_block_resnet.fullmatch(original_key):
|
|
regex_match = re_encoder_block_resnet.match(original_key)
|
|
groups = regex_match.groups()
|
|
block_index = int(groups[2]) * 2 + int(groups[3])
|
|
conv_index = {"1": 1, "3": 2}[groups[-2]]
|
|
prefix = f"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}."
|
|
resnet_block = f"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"
|
|
re_new_key = prefix + resnet_block
|
|
key = re_encoder_block_resnet.sub(re_new_key, original_key)
|
|
|
|
elif re_encoder_block_proj_out.fullmatch(original_key):
|
|
regex_match = re_encoder_block_proj_out.match(original_key)
|
|
groups = regex_match.groups()
|
|
re_new_key = f"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}"
|
|
key = re_encoder_block_proj_out.sub(re_new_key, original_key)
|
|
|
|
# rename vqvae.decoder keys
|
|
elif re_decoder_block_conv_out.fullmatch(original_key):
|
|
regex_match = re_decoder_block_conv_out.match(original_key)
|
|
groups = regex_match.groups()
|
|
block_index = int(groups[2]) * 2 + int(groups[3]) - 2
|
|
re_new_key = f"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}"
|
|
key = re_decoder_block_conv_out.sub(re_new_key, original_key)
|
|
|
|
elif re_decoder_block_resnet.fullmatch(original_key):
|
|
regex_match = re_decoder_block_resnet.match(original_key)
|
|
groups = regex_match.groups()
|
|
block_index = int(groups[2]) * 2 + int(groups[3]) - 2
|
|
conv_index = {"1": 1, "3": 2}[groups[-2]]
|
|
prefix = f"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}."
|
|
resnet_block = f"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"
|
|
re_new_key = prefix + resnet_block
|
|
key = re_decoder_block_resnet.sub(re_new_key, original_key)
|
|
|
|
elif re_decoder_block_proj_in.fullmatch(original_key):
|
|
regex_match = re_decoder_block_proj_in.match(original_key)
|
|
groups = regex_match.groups()
|
|
re_new_key = f"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}"
|
|
key = re_decoder_block_proj_in.sub(re_new_key, original_key)
|
|
|
|
# rename prior cond.model to upsampler.upsample_block and resnet
|
|
elif re_prior_cond_conv_out.fullmatch(original_key):
|
|
regex_match = re_prior_cond_conv_out.match(original_key)
|
|
groups = regex_match.groups()
|
|
block_index = int(groups[1]) * 2 + int(groups[2]) - 2
|
|
re_new_key = f"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}"
|
|
key = re_prior_cond_conv_out.sub(re_new_key, original_key)
|
|
|
|
elif re_prior_cond_resnet.fullmatch(original_key):
|
|
regex_match = re_prior_cond_resnet.match(original_key)
|
|
groups = regex_match.groups()
|
|
block_index = int(groups[1]) * 2 + int(groups[2]) - 2
|
|
conv_index = {"1": 1, "3": 2}[groups[-2]]
|
|
prefix = f"conditioner_blocks.upsampler.upsample_block.{block_index}."
|
|
resnet_block = f"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"
|
|
re_new_key = prefix + resnet_block
|
|
key = re_prior_cond_resnet.sub(re_new_key, original_key)
|
|
|
|
elif re_prior_cond_proj_in.fullmatch(original_key):
|
|
regex_match = re_prior_cond_proj_in.match(original_key)
|
|
groups = regex_match.groups()
|
|
re_new_key = f"conditioner_blocks.upsampler.proj_in.{groups[-1]}"
|
|
key = re_prior_cond_proj_in.sub(re_new_key, original_key)
|
|
|
|
# keep original key
|
|
else:
|
|
key = original_key
|
|
|
|
key = replace_key(key)
|
|
|
|
if f"{key_prefix}.{key}" not in model_state_dict or key is None:
|
|
print(f"failed converting {original_key} to {key}, does not match")
|
|
|
|
# handle missmatched shape
|
|
elif value.shape != model_state_dict[f"{key_prefix}.{key}"].shape:
|
|
val = model_state_dict[f"{key_prefix}.{key}"]
|
|
print(f"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match")
|
|
key = original_key
|
|
|
|
mapping[key] = original_key
|
|
new_dict[key] = value
|
|
|
|
return new_dict
|
|
|
|
|
|
@torch.no_grad()
|
|
def convert_openai_checkpoint(model_name=None, pytorch_dump_folder_path=None):
|
|
"""
|
|
Copy/paste/tweak model's weights to our Jukebox structure.
|
|
"""
|
|
for file in MODEL_MAPPING[model_name]:
|
|
if not os.path.isfile(f"{pytorch_dump_folder_path}/{file.split('/')[-1]}"):
|
|
r = requests.get(f"{PREFIX}{file}", allow_redirects=True)
|
|
os.makedirs(f"{pytorch_dump_folder_path}/", exist_ok=True)
|
|
open(f"{pytorch_dump_folder_path}/{file.split('/')[-1]}", "wb").write(r.content)
|
|
|
|
model_to_convert = MODEL_MAPPING[model_name.split("/")[-1]]
|
|
|
|
config = JukeboxConfig.from_pretrained(model_name)
|
|
model = JukeboxModel(config)
|
|
|
|
weight_dict = []
|
|
mapping = {}
|
|
for i, dict_name in enumerate(model_to_convert):
|
|
old_dic = torch.load(f"{pytorch_dump_folder_path}/{dict_name.split('/')[-1]}")["model"]
|
|
|
|
new_dic = {}
|
|
for k in old_dic.keys():
|
|
if k.endswith(".b"):
|
|
new_dic[k.replace("b", "bias")] = old_dic[k]
|
|
elif k.endswith(".w"):
|
|
new_dic[k.replace("w", "weight")] = old_dic[k]
|
|
elif "level_2" not in dict_name and "cond.model." in k:
|
|
new_dic[k.replace(".blocks.", ".model.")] = old_dic[k]
|
|
else:
|
|
new_dic[k] = old_dic[k]
|
|
|
|
key_prefix = "vqvae" if i == 0 else f"priors.{3 - i}"
|
|
new_dic = fix_jukebox_keys(new_dic, model.state_dict(), key_prefix, mapping)
|
|
weight_dict.append(new_dic)
|
|
|
|
vqvae_state_dict = weight_dict.pop(0)
|
|
model.vqvae.load_state_dict(vqvae_state_dict)
|
|
for i in range(len(weight_dict)):
|
|
model.priors[i].load_state_dict(weight_dict[2 - i])
|
|
|
|
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
|
|
with open(f"{pytorch_dump_folder_path}/mapping.json", "w") as txtfile:
|
|
json.dump(mapping, txtfile)
|
|
|
|
print(f"Saving model {model_name} to {pytorch_dump_folder_path}")
|
|
model.save_pretrained(pytorch_dump_folder_path)
|
|
|
|
return weight_dict
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
# Required parameters
|
|
parser.add_argument(
|
|
"--model_name",
|
|
default="jukebox-5b-lyrics",
|
|
type=str,
|
|
help="Name of the model you'd like to convert.",
|
|
)
|
|
parser.add_argument(
|
|
"--pytorch_dump_folder_path",
|
|
default="jukebox-5b-lyrics-converted",
|
|
type=str,
|
|
help="Path to the output PyTorch model directory.",
|
|
)
|
|
args = parser.parse_args()
|
|
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
|