ai-content-maker/.venv/Lib/site-packages/transformers/models/kosmos2/modeling_kosmos2.py

2055 lines
93 KiB
Python

# coding=utf-8
# Copyright 2023 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch KOSMOS-2 model."""
import math
from dataclasses import dataclass
from typing import Any, List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
BaseModelOutputWithPooling,
CausalLMOutputWithCrossAttentions,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_kosmos2 import Kosmos2Config, Kosmos2TextConfig, Kosmos2VisionConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = Kosmos2Config
from ..deprecated._archive_maps import KOSMOS2_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
bsz, src_len = mask.size()
tgt_len = tgt_len if tgt_len is not None else src_len
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
def _make_causal_mask(
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
):
"""
Make causal mask used for bi-directional self-attention.
"""
bsz, tgt_len = input_ids_shape
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
mask_cond = torch.arange(mask.size(-1), device=device)
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
mask = mask.to(dtype)
if past_key_values_length > 0:
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
# Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
"""
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
are ignored. This is modified from fairseq's `utils.make_positions`.
Args:
x: torch.Tensor x:
Returns: torch.Tensor
"""
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
mask = input_ids.ne(padding_idx).int()
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
return incremental_indices.long() + padding_idx
KOSMOS2_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`Kosmos2Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
KOSMOS2_VISION_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`CLIPImageProcessor.__call__`] for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
KOSMOS2_TEXT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
image_embeds: (`torch.FloatTensor` of shape `(batch_size, latent_query_num, hidden_size)`, *optional*):
Sequence of hidden-states at the output of `Kosmos2ImageToTextProjection`.
image_embeds_position_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to indicate the location in a sequence to insert the image features . Mask values selected in `[0,
1]`:
- 1 for places where to put the image features,
- 0 for places that are not for image features (i.e. for text tokens).
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
KOSMOS2_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`CLIPImageProcessor.__call__`] for details.
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
image_embeds_position_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to indicate the location in a sequence to insert the image features . Mask values selected in `[0,
1]`:
- 1 for places where to put the image features,
- 0 for places that are not for image features (i.e. for text tokens).
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
image_embeds: (`torch.FloatTensor` of shape `(batch_size, latent_query_num, hidden_size)`, *optional*):
Sequence of hidden-states at the output of `Kosmos2ImageToTextProjection`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@dataclass
class Kosmos2ModelOutput(ModelOutput):
"""
Base class for text model's outputs that also contains a pooling of the last hidden states.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_embeds (`torch.FloatTensor` of shape `(batch_size, latent_query_num, hidden_size)`, *optional*):
Sequence of hidden-states at the output of `Kosmos2ImageToTextProjection`.
projection_attentions (`tuple(torch.FloatTensor)`, *optional*):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights given by `Kosmos2ImageToTextProjection`, after the attention softmax, used to compute
the weighted average in the self-attention heads.
vision_model_output(`BaseModelOutputWithPooling`, *optional*):
The output of the [`Kosmos2VisionModel`].
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
`config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
input) to speed up sequential decoding.
"""
last_hidden_state: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
image_embeds: Optional[torch.FloatTensor] = None
projection_attentions: Optional[Tuple[torch.FloatTensor]] = None
vision_model_output: BaseModelOutputWithPooling = None
def to_tuple(self) -> Tuple[Any]:
return tuple(
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
for k in self.keys()
)
@dataclass
class Kosmos2ForConditionalGenerationModelOutput(ModelOutput):
"""
Model output class for `Kosmos2ForConditionalGeneration`.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_embeds (`torch.FloatTensor` of shape `(batch_size, latent_query_num, hidden_size)`, *optional*):
Sequence of hidden-states at the output of `Kosmos2ImageToTextProjection`.
projection_attentions (`tuple(torch.FloatTensor)`, *optional*):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights given by `Kosmos2ImageToTextProjection`, after the attention softmax, used to compute
the weighted average in the self-attention heads.
vision_model_output(`BaseModelOutputWithPooling`, *optional*):
The output of the [`Kosmos2VisionModel`].
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
`config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
input) to speed up sequential decoding.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
image_embeds: Optional[torch.FloatTensor] = None
projection_attentions: Optional[Tuple[torch.FloatTensor]] = None
vision_model_output: BaseModelOutputWithPooling = None
def to_tuple(self) -> Tuple[Any]:
return tuple(
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
for k in self.keys()
)
# Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings with CLIP->Kosmos2
class Kosmos2VisionEmbeddings(nn.Module):
def __init__(self, config: Kosmos2VisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=self.embed_dim,
kernel_size=self.patch_size,
stride=self.patch_size,
bias=False,
)
self.num_patches = (self.image_size // self.patch_size) ** 2
self.num_positions = self.num_patches + 1
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
batch_size = pixel_values.shape[0]
target_dtype = self.patch_embedding.weight.dtype
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
embeddings = embeddings + self.position_embedding(self.position_ids)
return embeddings
# Copied from transformers.models.clip.modeling_clip.CLIPAttention with CLIP->Kosmos2Vision
class Kosmos2VisionAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
bsz, tgt_len, embed_dim = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scale
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
# apply the causal_attention_mask first
if causal_attention_mask is not None:
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
f" {causal_attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if output_attentions:
# this operation is a bit akward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Kosmos2Vision
class Kosmos2VisionMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->Kosmos2Vision
class Kosmos2VisionEncoderLayer(nn.Module):
def __init__(self, config: Kosmos2VisionConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = Kosmos2VisionAttention(config)
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = Kosmos2VisionMLP(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
causal_attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
`(config.encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->Kosmos2Vision
class Kosmos2VisionEncoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`Kosmos2VisionEncoderLayer`].
Args:
config: Kosmos2VisionConfig
"""
def __init__(self, config: Kosmos2VisionConfig):
super().__init__()
self.config = config
self.layers = nn.ModuleList([Kosmos2VisionEncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
inputs_embeds,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Causal mask for the text model. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
# Similar to `transformers.models.clip.modeling_clip.CLIPVisionTransformer` but without docstring for `forward`
class Kosmos2VisionTransformer(nn.Module):
# Copied from transformers.models.clip.modeling_clip.CLIPVisionTransformer.__init__ with CLIPVision->Kosmos2Vision,CLIP_VISION->KOSMOS2_VISION,CLIP->Kosmos2Vision
def __init__(self, config: Kosmos2VisionConfig):
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = Kosmos2VisionEmbeddings(config)
self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
self.encoder = Kosmos2VisionEncoder(config)
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
hidden_states = self.embeddings(pixel_values)
hidden_states = self.pre_layrnorm(hidden_states)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
pooled_output = last_hidden_state[:, 0, :]
pooled_output = self.post_layernorm(pooled_output)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
# Similar to `transformers.models.m2m_100.modeling_m2m_100.M2M100SinusoidalPositionalEmbedding` but allowing to pass `position_ids`
class Kosmos2TextSinusoidalPositionalEmbedding(nn.Module):
"""This module produces sinusoidal positional embeddings of any length."""
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100SinusoidalPositionalEmbedding.__init__
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None):
super().__init__()
self.offset = 2
self.embedding_dim = embedding_dim
self.padding_idx = padding_idx
self.make_weights(num_positions + self.offset, embedding_dim, padding_idx)
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100SinusoidalPositionalEmbedding.make_weights
def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx)
if hasattr(self, "weights"):
# in forward put the weights on the correct dtype and device of the param
emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device)
self.register_buffer("weights", emb_weights, persistent=False)
@staticmethod
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100SinusoidalPositionalEmbedding.get_embedding
def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
"""
Build sinusoidal embeddings.
This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of
"Attention Is All You Need".
"""
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb)
emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
if embedding_dim % 2 == 1:
# zero pad
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
if padding_idx is not None:
emb[padding_idx, :] = 0
return emb.to(torch.get_default_dtype())
@torch.no_grad()
def forward(
self,
input_ids: torch.Tensor = None,
inputs_embeds: torch.Tensor = None,
past_key_values_length: int = 0,
position_ids: torch.Tensor = None,
):
if input_ids is not None:
bsz, seq_len = input_ids.size()
if position_ids is None:
# Create the position ids from the input token ids. Any padded tokens remain padded.
position_ids = create_position_ids_from_input_ids(
input_ids, self.padding_idx, past_key_values_length
).to(input_ids.device)
else:
bsz, seq_len = inputs_embeds.size()[:-1]
if position_ids is None:
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds, past_key_values_length)
# expand embeddings if needed
max_pos = self.padding_idx + 1 + seq_len + past_key_values_length
if max_pos > self.weights.size(0):
self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx)
return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, self.weights.shape[-1]).detach()
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100SinusoidalPositionalEmbedding.create_position_ids_from_inputs_embeds
def create_position_ids_from_inputs_embeds(self, inputs_embeds, past_key_values_length):
"""
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
Args:
inputs_embeds: torch.Tensor
Returns: torch.Tensor
"""
input_shape = inputs_embeds.size()[:-1]
sequence_length = input_shape[1]
position_ids = torch.arange(
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
)
return position_ids.unsqueeze(0).expand(input_shape).contiguous() + past_key_values_length
class KosmosTextAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
# Similar to transformers.models.bart.modeling_bart.BartAttention.__init__ except an additional `inner_attn_ln`.
def __init__(
self,
config,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
add_inner_attn_layernorm: bool = False,
bias: bool = True,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
# End opy
self.inner_attn_ln = None
if add_inner_attn_layernorm:
self.inner_attn_ln = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
def _shape(self, projection: torch.Tensor) -> torch.Tensor:
new_projection_shape = projection.size()[:-1] + (self.num_heads, self.head_dim)
# move heads to 2nd position (B, T, H * D) -> (B, T, H, D) -> (B, H, T, D)
new_projection = projection.view(new_projection_shape).permute(0, 2, 1, 3)
return new_projection
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = encoder_hidden_states is not None
batch_size, seq_length = hidden_states.shape[:2]
# use encoder_hidden_states if cross attention
current_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
# checking that the `sequence_length` of the `past_key_value` is the same as the he provided
# `encoder_hidden_states` to support prefix tuning
if is_cross_attention and past_key_value and past_key_value[0].shape[2] == current_states.shape[1]:
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
else:
key_states = self._shape(self.k_proj(current_states))
value_states = self._shape(self.v_proj(current_states))
if past_key_value is not None and not is_cross_attention:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
query_states = self._shape(self.q_proj(hidden_states) * self.scaling)
attn_weights = torch.matmul(query_states, key_states.transpose(-1, -2))
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
src_len = key_states.size(2)
if attention_mask is not None:
if attention_mask.size() != (batch_size, 1, seq_length, src_len):
raise ValueError(
f"Attention mask should be of size {(batch_size, 1, seq_length, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
# Mask heads if we want to
if layer_head_mask is not None:
attn_weights = attn_weights * layer_head_mask
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
# attn_output = torch.bmm(attn_probs, value_states) ?
context_states = torch.matmul(attn_weights, value_states)
# attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) ?
context_states = context_states.permute(0, 2, 1, 3).contiguous().view(batch_size, seq_length, -1)
if self.inner_attn_ln is not None:
context_states = self.inner_attn_ln(context_states)
attn_output = self.out_proj(context_states)
return attn_output, attn_weights, past_key_value
class Kosmos2TextFFN(nn.Module):
def __init__(self, config: Kosmos2TextConfig):
super().__init__()
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(config.embed_dim, config.ffn_dim)
self.fc2 = nn.Linear(config.ffn_dim, config.embed_dim)
self.ffn_layernorm = nn.LayerNorm(config.ffn_dim, eps=config.layer_norm_eps)
def forward(self, hidden_states):
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.ffn_layernorm(hidden_states)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
return hidden_states
class Kosmos2TextBlock(nn.Module):
def __init__(self, config: Kosmos2TextConfig):
super().__init__()
self.embed_dim = config.embed_dim
self.self_attn = KosmosTextAttention(
config,
embed_dim=self.embed_dim,
num_heads=config.attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
add_inner_attn_layernorm=True,
)
self.dropout = config.dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
if config.add_cross_attention:
self.encoder_attn = KosmosTextAttention(
config,
embed_dim=self.embed_dim,
num_heads=config.attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
add_inner_attn_layernorm=False,
)
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.ffn = Kosmos2TextFFN(config)
self.final_layer_norm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
hidden_states = self.self_attn_layer_norm(hidden_states)
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
if not hasattr(self, "encoder_attn"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
" by setting `config.add_cross_attention=True`"
)
residual = hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
# FFN
hidden_states = self.ffn(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
if use_cache:
outputs += (present_key_value,)
return outputs
class Kosmos2TextTransformer(nn.Module):
"""
Transformer decoder consisting of `config.layers` layers. Each layer is a [`Kosmos2TextBlock`].
Args:
config: Kosmos2TextConfig
"""
def __init__(self, config: Kosmos2TextConfig):
super().__init__()
self.config = config
self.dropout = config.dropout
self.layerdrop = config.layerdrop
self.embed_scale = math.sqrt(config.embed_dim) if config.scale_embedding else 1.0
self.embed_tokens = nn.Embedding(config.vocab_size, config.embed_dim, padding_idx=config.pad_token_id)
self.embed_positions = Kosmos2TextSinusoidalPositionalEmbedding(
num_positions=config.max_position_embeddings,
embedding_dim=config.embed_dim,
padding_idx=config.pad_token_id,
)
self.layers = nn.ModuleList([Kosmos2TextBlock(config) for _ in range(config.layers)])
self.layer_norm = nn.LayerNorm(config.embed_dim, config.layer_norm_eps)
self.gradient_checkpointing = False
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask = None
if input_shape[-1] > 1:
combined_attention_mask = _make_causal_mask(
input_shape,
inputs_embeds.dtype,
device=inputs_embeds.device,
past_key_values_length=past_key_values_length,
)
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
inputs_embeds.device
)
combined_attention_mask = (
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
)
return combined_attention_mask
def forward_embedding(
self,
input_ids,
inputs_embeds: torch.Tensor = None,
image_embeds: torch.Tensor = None,
img_input_mask: torch.Tensor = None,
past_key_values_length: int = 0,
position_ids: torch.Tensor = None,
):
# The argument `inputs_embeds` should be the one without being multiplied by `self.embed_scale`.
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if image_embeds is not None:
inputs_embeds[img_input_mask.to(dtype=torch.bool)] = image_embeds.to(inputs_embeds.device).view(
-1, image_embeds.size(-1)
)
inputs_embeds = inputs_embeds * self.embed_scale
# embed positions
positions = self.embed_positions(
input_ids=input_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
position_ids=position_ids,
)
positions = positions.to(inputs_embeds.device)
hidden_states = inputs_embeds + positions
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
return hidden_states
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
image_embeds: Optional[torch.Tensor] = None,
image_embeds_position_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.shape
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
# We don't need img info. when `past_key_values_length` > 0
if past_key_values_length > 0:
image_embeds = None
image_embeds_position_mask = None
hidden_states = self.forward_embedding(
input_ids=input_ids,
inputs_embeds=inputs_embeds,
image_embeds=image_embeds,
img_input_mask=image_embeds_position_mask,
past_key_values_length=past_key_values_length,
position_ids=position_ids,
)
attention_mask = self._prepare_decoder_attention_mask(
attention_mask, input_shape, hidden_states, past_key_values_length
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _expand_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1])
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
present_key_value_states = () if use_cache else None
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
if attn_mask is not None:
if attn_mask.size()[0] != (len(self.layers)):
raise ValueError(
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop:
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
head_mask[idx] if head_mask is not None else None,
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
None,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_attn_layer_head_mask=(
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
present_key_value_states += (layer_outputs[3 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
# add final layer norm
hidden_states = self.layer_norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
present_key_value_states,
all_hidden_states,
all_self_attns,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=present_key_value_states,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
class Kosmos2PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = Kosmos2Config
supports_gradient_checkpointing = True
_no_split_modules = ["Kosmos2VisionEncoderLayer", "Kosmos2TextBlock"]
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(self, Kosmos2VisionModel):
factor = self.config.initializer_factor
elif isinstance(self, (Kosmos2Model, Kosmos2ForConditionalGeneration)):
factor = self.config.vision_config.initializer_factor
if isinstance(self, (Kosmos2TextModel, Kosmos2TextForCausalLM)):
std = self.config.init_std
elif isinstance(self, (Kosmos2Model, Kosmos2ForConditionalGeneration)):
std = self.config.text_config.init_std
if isinstance(module, Kosmos2VisionEmbeddings):
nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor)
elif isinstance(module, Kosmos2VisionAttention):
in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
out_proj_std = (module.embed_dim**-0.5) * factor
nn.init.normal_(module.q_proj.weight, std=in_proj_std)
nn.init.normal_(module.k_proj.weight, std=in_proj_std)
nn.init.normal_(module.v_proj.weight, std=in_proj_std)
nn.init.normal_(module.out_proj.weight, std=out_proj_std)
if module.q_proj.bias is not None:
module.q_proj.bias.data.zero_()
if module.k_proj.bias is not None:
module.k_proj.bias.data.zero_()
if module.v_proj.bias is not None:
module.v_proj.bias.data.zero_()
if module.out_proj.bias is not None:
module.out_proj.bias.data.zero_()
elif isinstance(module, Kosmos2VisionMLP):
in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
nn.init.normal_(module.fc1.weight, std=fc_std)
nn.init.normal_(module.fc2.weight, std=in_proj_std)
if module.fc1.bias is not None:
module.fc1.bias.data.zero_()
if module.fc2.bias is not None:
module.fc2.bias.data.zero_()
elif isinstance(module, Kosmos2VisionEncoderLayer):
module.layer_norm1.bias.data.zero_()
module.layer_norm1.weight.data.fill_(1.0)
module.layer_norm2.bias.data.zero_()
module.layer_norm2.weight.data.fill_(1.0)
elif isinstance(module, Kosmos2VisionTransformer):
module.pre_layrnorm.bias.data.zero_()
module.pre_layrnorm.weight.data.fill_(1.0)
module.post_layernorm.bias.data.zero_()
module.post_layernorm.weight.data.fill_(1.0)
elif isinstance(module, KosmosTextAttention):
nn.init.normal_(module.q_proj.weight, std=std)
nn.init.normal_(module.k_proj.weight, std=std)
nn.init.normal_(module.v_proj.weight, std=std)
nn.init.normal_(module.out_proj.weight, std=std)
if module.q_proj.bias is not None:
module.q_proj.bias.data.zero_()
if module.k_proj.bias is not None:
module.k_proj.bias.data.zero_()
if module.v_proj.bias is not None:
module.v_proj.bias.data.zero_()
if module.out_proj.bias is not None:
module.out_proj.bias.data.zero_()
elif isinstance(module, Kosmos2TextFFN):
nn.init.normal_(module.fc1.weight, std=std)
nn.init.normal_(module.fc2.weight, std=std)
if module.fc1.bias is not None:
module.fc1.bias.data.zero_()
if module.fc2.bias is not None:
module.fc2.bias.data.zero_()
elif isinstance(module, Kosmos2TextForCausalLM):
nn.init.normal_(module.lm_head.weight, std=std)
if module.lm_head.bias is not None:
module.lm_head.bias.data.zero_()
elif isinstance(module, Kosmos2ImageToTextProjection):
nn.init.normal_(module.dense.weight, std=std)
if module.dense.bias is not None:
module.dense.bias.data.zero_()
elif isinstance(module, Kosmos2TextTransformer):
module.embed_tokens.weight.data.normal_(mean=0.0, std=std)
if module.embed_tokens.padding_idx is not None:
module.embed_tokens.weight.data[module.embed_tokens.padding_idx].zero_()
class Kosmos2VisionModel(Kosmos2PreTrainedModel):
config_class = Kosmos2VisionConfig
main_input_name = "pixel_values"
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModel.__init__ with CLIP_VISION->KOSMOS2_VISION,CLIP->Kosmos2,self.vision_model->self.model
def __init__(self, config: Kosmos2VisionConfig):
super().__init__(config)
self.model = Kosmos2VisionTransformer(config)
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModel.get_input_embeddings with CLIP_VISION->KOSMOS2_VISION,CLIP->Kosmos2,self.vision_model->self.model
def get_input_embeddings(self) -> nn.Module:
return self.model.embeddings.patch_embedding
@add_start_docstrings_to_model_forward(KOSMOS2_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=Kosmos2VisionConfig)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
"""
return self.model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
class Kosmos2TextModel(Kosmos2PreTrainedModel):
config_class = Kosmos2TextConfig
def __init__(self, config: Kosmos2TextConfig):
super().__init__(config)
self.model = Kosmos2TextTransformer(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@add_start_docstrings_to_model_forward(KOSMOS2_TEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPastAndCrossAttentions, config_class=Kosmos2TextConfig)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
image_embeds: Optional[torch.Tensor] = None,
image_embeds_position_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
r"""
Returns:
"""
return self.model(
input_ids=input_ids,
attention_mask=attention_mask,
image_embeds=image_embeds,
image_embeds_position_mask=image_embeds_position_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
position_ids=position_ids,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
@add_start_docstrings(
"""
The text model from KOSMOS-2 with a language modeling head on top (linear layer with weights tied to the input
embeddings).
""",
KOSMOS2_START_DOCSTRING,
)
class Kosmos2TextForCausalLM(Kosmos2PreTrainedModel):
config_class = Kosmos2TextConfig
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config: Kosmos2TextConfig):
super().__init__(config)
self.model = Kosmos2TextTransformer(config)
self.lm_head = nn.Linear(in_features=config.embed_dim, out_features=config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self) -> nn.Module:
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
@add_start_docstrings_to_model_forward(KOSMOS2_TEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=Kosmos2TextConfig)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
image_embeds: Optional[torch.Tensor] = None,
image_embeds_position_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if use_cache:
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
use_cache = False
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
image_embeds=image_embeds,
image_embeds_position_mask=image_embeds_position_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
position_ids=position_ids,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(outputs[0])
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(lm_logits.device)
# Shift so that tokens < n predict n
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
batch_size, seq_length, vocab_size = shift_logits.shape
# Flatten the tokens
loss_fct = CrossEntropyLoss()
loss = loss_fct(
shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length)
)
if not return_dict:
output = (lm_logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
image_embeds=None,
image_embeds_position_mask=None,
past_key_values=None,
attention_mask=None,
use_cache=None,
**model_kwargs,
):
input_shape = input_ids.shape
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
if attention_mask is None:
attention_mask = input_ids.new_ones(input_shape)
position_ids = None
# cut input_ids if past_key_values is used
if past_key_values is not None:
position_ids = create_position_ids_from_input_ids(
input_ids,
padding_idx=self.config.pad_token_id,
past_key_values_length=0,
)[:, -1:]
input_ids = input_ids[:, -1:]
# the image info. is already encoded into the past keys/values
image_embeds = None
image_embeds_position_mask = None
elif image_embeds_position_mask is not None:
# appending `False` to `image_embeds_position_mask` (because `input_ids` grows during generation)
batch_size, seq_len = input_ids.size()
mask_len = image_embeds_position_mask.size()[-1]
image_embeds_position_mask = torch.cat(
(
image_embeds_position_mask,
torch.zeros(size=(batch_size, seq_len - mask_len), dtype=torch.bool, device=input_ids.device),
),
dim=1,
)
return {
"input_ids": input_ids,
"image_embeds": image_embeds,
"image_embeds_position_mask": image_embeds_position_mask,
"past_key_values": past_key_values,
"attention_mask": attention_mask,
"position_ids": position_ids,
"use_cache": use_cache,
}
@staticmethod
# Copied from transformers.models.umt5.modeling_umt5.UMT5ForConditionalGeneration._reorder_cache
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
class Kosmos2ImageToTextProjection(nn.Module):
"""The layer that transforms the image model's output to part of the text model's input (namely, image features)"""
def __init__(self, config: Kosmos2Config):
super().__init__()
self.dense = nn.Linear(config.vision_config.hidden_size, config.text_config.embed_dim)
self.latent_query = nn.Parameter(torch.randn(config.latent_query_num, config.text_config.embed_dim))
self.x_attn = KosmosTextAttention(
config.text_config,
config.text_config.embed_dim,
config.text_config.attention_heads,
dropout=config.text_config.attention_dropout,
is_decoder=False,
add_inner_attn_layernorm=False,
)
def forward(self, features):
hidden_states = self.dense(features)
# shape = [batch, latent_query_num, h_dim]
latent_query = self.latent_query.unsqueeze(0).expand(hidden_states.size(0), -1, -1)
key_value_states = torch.cat([hidden_states, latent_query], dim=1)
hidden_states, attn_weights, _ = self.x_attn(
hidden_states=latent_query,
encoder_hidden_states=key_value_states,
past_key_value=None,
attention_mask=None,
output_attentions=None,
)
return hidden_states, attn_weights
@add_start_docstrings(
"""
KOSMOS-2 Model for generating text and image features. The model consists of a vision encoder and a language model.
""",
KOSMOS2_START_DOCSTRING,
)
class Kosmos2Model(Kosmos2PreTrainedModel):
config_class = Kosmos2Config
main_input_name = "pixel_values"
def __init__(self, config: Kosmos2Config):
super().__init__(config)
self.text_model = Kosmos2TextModel(config.text_config)
self.vision_model = Kosmos2VisionModel(config.vision_config)
self.image_to_text_projection = Kosmos2ImageToTextProjection(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.text_model.model.embed_tokens
def set_input_embeddings(self, value):
self.text_model.model.embed_tokens = value
@add_start_docstrings_to_model_forward(KOSMOS2_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Kosmos2ModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
input_ids: Optional[torch.Tensor] = None,
image_embeds_position_mask: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
image_embeds: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Kosmos2ModelOutput]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, Kosmos2Model
>>> model = Kosmos2Model.from_pretrained("microsoft/kosmos-2-patch14-224")
>>> processor = AutoProcessor.from_pretrained("microsoft/kosmos-2-patch14-224")
>>> url = "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> text = (
... "<grounding> An image of<phrase> a snowman</phrase><object><patch_index_0044><patch_index_0863>"
... "</object> warming himself by<phrase> a fire</phrase><object><patch_index_0005><patch_index_0911>"
... "</object>"
... )
>>> inputs = processor(text=text, images=image, return_tensors="pt", add_eos_token=True)
>>> last_hidden_state = model(
... pixel_values=inputs["pixel_values"],
... input_ids=inputs["input_ids"],
... attention_mask=inputs["attention_mask"],
... image_embeds_position_mask=inputs["image_embeds_position_mask"],
... ).last_hidden_state
>>> list(last_hidden_state.shape)
[1, 91, 2048]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_model_output = None
projection_attentions = None
if image_embeds is None:
if pixel_values is None:
raise ValueError("You have to specify either `pixel_values` or `image_embeds`.")
vision_model_output = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# The whole `last_hidden_state` through `post_layernorm` instead of just `pooled_output`.
image_embeds = self.vision_model.model.post_layernorm(vision_model_output[0])
# normalized features
image_embeds = nn.functional.normalize(image_embeds, dim=-1)
image_embeds, projection_attentions = self.image_to_text_projection(image_embeds)
outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
image_embeds=image_embeds,
image_embeds_position_mask=image_embeds_position_mask,
head_mask=head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
position_ids=position_ids,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
outputs = outputs + (image_embeds, projection_attentions, vision_model_output)
return tuple(output for output in outputs if output is not None)
return Kosmos2ModelOutput(
last_hidden_state=outputs.last_hidden_state,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
image_embeds=image_embeds,
projection_attentions=projection_attentions,
vision_model_output=vision_model_output,
)
@add_start_docstrings(
"""
KOSMOS-2 Model for generating text and bounding boxes given an image. The model consists of a vision encoder and a
language model.
""",
KOSMOS2_START_DOCSTRING,
)
class Kosmos2ForConditionalGeneration(Kosmos2PreTrainedModel):
config_class = Kosmos2Config
main_input_name = "pixel_values"
_tied_weights_keys = ["text_model.lm_head.weight"]
def __init__(self, config: Kosmos2Config):
super().__init__(config)
self.text_model = Kosmos2TextForCausalLM(config.text_config)
self.vision_model = Kosmos2VisionModel(config.vision_config)
self.image_to_text_projection = Kosmos2ImageToTextProjection(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.text_model.model.embed_tokens
def set_input_embeddings(self, value):
self.text_model.model.embed_tokens = value
def get_output_embeddings(self) -> nn.Module:
return self.text_model.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
self.text_model.set_output_embeddings(new_embeddings)
@add_start_docstrings_to_model_forward(KOSMOS2_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Kosmos2ForConditionalGenerationModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
input_ids: Optional[torch.Tensor] = None,
image_embeds_position_mask: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
image_embeds: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Kosmos2ForConditionalGenerationModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, Kosmos2ForConditionalGeneration
>>> model = Kosmos2ForConditionalGeneration.from_pretrained("microsoft/kosmos-2-patch14-224")
>>> processor = AutoProcessor.from_pretrained("microsoft/kosmos-2-patch14-224")
>>> url = "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> prompt = "<grounding> An image of"
>>> inputs = processor(text=prompt, images=image, return_tensors="pt")
>>> generated_ids = model.generate(
... pixel_values=inputs["pixel_values"],
... input_ids=inputs["input_ids"],
... attention_mask=inputs["attention_mask"],
... image_embeds=None,
... image_embeds_position_mask=inputs["image_embeds_position_mask"],
... use_cache=True,
... max_new_tokens=64,
... )
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
>>> processed_text = processor.post_process_generation(generated_text, cleanup_and_extract=False)
>>> processed_text
'<grounding> An image of<phrase> a snowman</phrase><object><patch_index_0044><patch_index_0863></object> warming himself by<phrase> a fire</phrase><object><patch_index_0005><patch_index_0911></object>.'
>>> caption, entities = processor.post_process_generation(generated_text)
>>> caption
'An image of a snowman warming himself by a fire.'
>>> entities
[('a snowman', (12, 21), [(0.390625, 0.046875, 0.984375, 0.828125)]), ('a fire', (41, 47), [(0.171875, 0.015625, 0.484375, 0.890625)])]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_model_output = None
projection_attentions = None
if image_embeds is None:
if pixel_values is None:
raise ValueError("You have to specify either `pixel_values` or `image_embeds`.")
vision_model_output = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# The whole `last_hidden_state` through `post_layernorm` instead of just `pooled_output`.
image_embeds = self.vision_model.model.post_layernorm(vision_model_output[0])
# normalized features
image_embeds = nn.functional.normalize(image_embeds, dim=-1)
image_embeds, projection_attentions = self.image_to_text_projection(image_embeds)
lm_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
image_embeds=image_embeds,
image_embeds_position_mask=image_embeds_position_mask,
head_mask=head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
position_ids=position_ids,
labels=labels,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
outputs = lm_outputs + (image_embeds, projection_attentions, vision_model_output)
return tuple(output for output in outputs if output is not None)
return Kosmos2ForConditionalGenerationModelOutput(
loss=lm_outputs.loss,
logits=lm_outputs.logits,
past_key_values=lm_outputs.past_key_values,
hidden_states=lm_outputs.hidden_states,
attentions=lm_outputs.attentions,
image_embeds=image_embeds,
projection_attentions=projection_attentions,
vision_model_output=vision_model_output,
)
def generate(
self,
pixel_values: Optional[torch.Tensor] = None,
image_embeds_position_mask: Optional[torch.Tensor] = None,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
image_embeds: Optional[torch.Tensor] = None,
**kwargs,
):
# in order to allow `inputs` argument (as in `GenerationMixin`)
inputs = kwargs.pop("inputs", None)
if pixel_values is not None and inputs is not None:
raise ValueError(
f"`inputs`: {inputs} were passed alongside `pixel_values` which is not allowed."
f"Make sure to either pass `inputs` or pixel_values=..."
)
if pixel_values is None and inputs is not None:
pixel_values = inputs
if image_embeds is None:
vision_model_output = self.vision_model(pixel_values)
# The whole `last_hidden_state` through `post_layernorm` instead of just `pooled_output`.
image_embeds = self.vision_model.model.post_layernorm(vision_model_output[0])
# normalized features
image_embeds = nn.functional.normalize(image_embeds, dim=-1)
image_embeds, projection_attentions = self.image_to_text_projection(image_embeds)
output = self.text_model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
image_embeds=image_embeds,
image_embeds_position_mask=image_embeds_position_mask,
**kwargs,
)
return output