667 lines
29 KiB
Python
667 lines
29 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Processor class for KOSMOS-2."""
|
|
|
|
import copy
|
|
import math
|
|
import re
|
|
from typing import List, Optional, Tuple, Union
|
|
|
|
from ...image_processing_utils import BatchFeature
|
|
from ...image_utils import ImageInput, is_batched
|
|
from ...processing_utils import ProcessorMixin
|
|
from ...tokenization_utils import AddedToken
|
|
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, TextInput, TruncationStrategy
|
|
from ...utils import TensorType
|
|
|
|
|
|
BboxInput = Union[
|
|
List[Tuple[int, int]],
|
|
List[Tuple[float, float, float, float]],
|
|
List[List[Tuple[int, int]]],
|
|
List[List[Tuple[float, float, float]]],
|
|
]
|
|
|
|
|
|
class Kosmos2Processor(ProcessorMixin):
|
|
r"""
|
|
Constructs an KOSMOS-2 processor which wraps a KOSMOS-2 image processor and a KOSMOS-2 tokenizer into a single
|
|
processor.
|
|
|
|
[`Kosmos2Processor`] offers all the functionalities of [`CLIPImageProcessor`] and some functionalities of
|
|
[`XLMRobertaTokenizerFast`]. See the docstring of [`~Kosmos2Processor.__call__`] and [`~Kosmos2Processor.decode`]
|
|
for more information.
|
|
|
|
Args:
|
|
image_processor (`CLIPImageProcessor`):
|
|
An instance of [`CLIPImageProcessor`]. The image processor is a required input.
|
|
tokenizer (`XLMRobertaTokenizerFast`):
|
|
An instance of ['XLMRobertaTokenizerFast`]. The tokenizer is a required input.
|
|
num_patch_index_tokens (`int`, *optional*, defaults to 1024):
|
|
The number of tokens that represent patch indices.
|
|
"""
|
|
|
|
attributes = ["image_processor", "tokenizer"]
|
|
image_processor_class = "CLIPImageProcessor"
|
|
tokenizer_class = ("XLMRobertaTokenizer", "XLMRobertaTokenizerFast")
|
|
|
|
def __init__(self, image_processor, tokenizer, num_patch_index_tokens=1024):
|
|
tokenizer.return_token_type_ids = False
|
|
|
|
self.eod_token = "</doc>"
|
|
|
|
self.boi_token = "<image>"
|
|
self.eoi_token = "</image>"
|
|
|
|
self.eoc_token = "</chunk>"
|
|
self.eol_token = "</line>"
|
|
|
|
self.bop_token = "<phrase>"
|
|
self.eop_token = "</phrase>"
|
|
|
|
self.boo_token = "<object>"
|
|
self.eoo_token = "</object>"
|
|
|
|
self.dom_token = "</delimiter_of_multi_objects/>"
|
|
|
|
self.grd_token = "<grounding>"
|
|
|
|
self.tag_tokens = [
|
|
self.eod_token,
|
|
self.boi_token,
|
|
self.eoi_token,
|
|
self.eoc_token,
|
|
self.eol_token,
|
|
self.bop_token,
|
|
self.eop_token,
|
|
self.boo_token,
|
|
self.eoo_token,
|
|
self.dom_token,
|
|
self.grd_token,
|
|
]
|
|
|
|
self.num_patch_index_tokens = num_patch_index_tokens
|
|
patch_index_tokens = [f"<patch_index_{str(x).zfill(4)}>" for x in range(self.num_patch_index_tokens)]
|
|
|
|
tokens_to_add = []
|
|
for token in self.tag_tokens + patch_index_tokens:
|
|
tokens_to_add.append(AddedToken(token, lstrip=True, rstrip=False, normalized=False))
|
|
tokenizer.add_tokens(tokens_to_add)
|
|
|
|
super().__init__(image_processor, tokenizer)
|
|
|
|
def __call__(
|
|
self,
|
|
images: ImageInput = None,
|
|
text: Union[TextInput, List[TextInput]] = None,
|
|
bboxes: BboxInput = None,
|
|
num_image_tokens: Optional[int] = 64,
|
|
first_image_token_id: Optional[int] = None,
|
|
add_special_tokens: bool = True,
|
|
add_eos_token: bool = False,
|
|
padding: Union[bool, str, PaddingStrategy] = False,
|
|
truncation: Union[bool, str, TruncationStrategy] = None,
|
|
max_length: Optional[int] = None,
|
|
pad_to_multiple_of: Optional[int] = None,
|
|
return_attention_mask: Optional[bool] = None,
|
|
return_length: bool = False,
|
|
verbose: bool = True,
|
|
return_tensors: Optional[Union[str, TensorType]] = None,
|
|
**kwargs,
|
|
) -> BatchFeature:
|
|
"""
|
|
This method uses [`CLIPImageProcessor.__call__`] method to prepare image(s) for the model, and
|
|
[`XLMRobertaTokenizerFast.__call__`] to prepare text for the model.
|
|
|
|
Please refer to the docstring of the above two methods for more information.
|
|
|
|
The rest of this documentation shows the arguments specific to `Kosmos2Processor`.
|
|
|
|
Args:
|
|
bboxes (`Union[List[Tuple[int]], List[Tuple[float]], List[List[Tuple[int]]], List[List[Tuple[float]]]]`, *optional*):
|
|
The bounding bboxes associated to `texts`.
|
|
num_image_tokens (`int`, defaults to 64):
|
|
The number of (consecutive) places that are used to mark the placeholders to store image information.
|
|
This should be the same as `latent_query_num` in the instance of `Kosmos2Config` you are using.
|
|
first_image_token_id (`int`, *optional*):
|
|
The token id that will be used for the first place of the subsequence that is reserved to store image
|
|
information. If unset, will default to `self.tokenizer.unk_token_id + 1`.
|
|
add_eos_token (`bool`, defaults to `False`):
|
|
Whether or not to include `EOS` token id in the encoding when `add_special_tokens=True`.
|
|
"""
|
|
if images is None and text is None:
|
|
raise ValueError("You have to specify either images or text.")
|
|
|
|
encoding = BatchFeature()
|
|
|
|
if images is not None:
|
|
image_encoding = self.image_processor(images, return_tensors=return_tensors)
|
|
encoding.update(image_encoding)
|
|
|
|
if text is not None:
|
|
text = self.preprocess_examples(text, images, bboxes, num_image_tokens=num_image_tokens)
|
|
|
|
if add_special_tokens and not add_eos_token:
|
|
if isinstance(text, str):
|
|
text = f"{self.tokenizer.bos_token}{text}"
|
|
elif isinstance(text, list):
|
|
text = [f"{self.tokenizer.bos_token}{s}" for s in text]
|
|
|
|
text_encoding = self.tokenizer(
|
|
text=text,
|
|
add_special_tokens=(add_special_tokens and add_eos_token),
|
|
padding=padding and images is None,
|
|
truncation=truncation,
|
|
max_length=max_length,
|
|
pad_to_multiple_of=pad_to_multiple_of if images is None else pad_to_multiple_of,
|
|
return_attention_mask=return_attention_mask,
|
|
verbose=verbose,
|
|
return_tensors=return_tensors if images is None else None,
|
|
**kwargs,
|
|
)
|
|
encoding.update(text_encoding)
|
|
|
|
if text is not None and images is not None:
|
|
# Use the id of the first token after <unk>
|
|
if first_image_token_id is None:
|
|
first_image_token_id = self.tokenizer.unk_token_id + 1
|
|
|
|
# To see if we need one more `0` (for `<s>`) at the beginning of `image_embeds_position_mask`.
|
|
with_bos = add_special_tokens
|
|
|
|
# The first (actual) `<image>` token is always at the 1st or 2nd place (after `<s>` if any). Here we look
|
|
# for the second `<image>` token (which indicate the first image token).
|
|
start_index = int(with_bos) + 1
|
|
|
|
# Add `image_embeds_position_mask`: the leading and trailing `0` are for `boi` and `eoi` tokens. The `1` indicates
|
|
# the places of image tokens.
|
|
image_token_ids = list(range(first_image_token_id, first_image_token_id + num_image_tokens))
|
|
base_image_embeds_position_mask = [0] + [1] * num_image_tokens + [0]
|
|
|
|
# loop over `encoding["input_ids"]`
|
|
input_ids = []
|
|
image_embeds_position_mask = []
|
|
all_input_ids = encoding["input_ids"]
|
|
# not batched -> (changed to) batch of size 1
|
|
if isinstance(text, str):
|
|
all_input_ids = [all_input_ids]
|
|
encoding["attention_mask"] = [encoding["attention_mask"]]
|
|
for text_ids in all_input_ids:
|
|
# change the ids for the fake `<image>` tokens in `input_ids`
|
|
text_ids = text_ids[:start_index] + image_token_ids + text_ids[start_index + num_image_tokens :]
|
|
input_ids.append(text_ids)
|
|
|
|
mask = copy.copy(base_image_embeds_position_mask)
|
|
if with_bos:
|
|
# for `<s>`
|
|
mask = [0] + mask
|
|
# trailing part (which are not related to the image)
|
|
mask += [0] * (len(text_ids) - len(mask))
|
|
image_embeds_position_mask.append(mask)
|
|
|
|
if isinstance(text, list):
|
|
sorted_length = sorted(
|
|
[(idx, len(x)) for idx, x in enumerate(text_encoding.input_ids)], key=lambda x: x[-1]
|
|
)
|
|
_, min_len_not_padded = sorted_length[0]
|
|
idx, _ = sorted_length[-1]
|
|
|
|
text_encoding = self.tokenizer(
|
|
text=[text[idx]],
|
|
add_special_tokens=(add_special_tokens and add_eos_token),
|
|
padding=padding,
|
|
truncation=truncation,
|
|
max_length=max_length,
|
|
pad_to_multiple_of=pad_to_multiple_of,
|
|
verbose=verbose,
|
|
return_tensors=None,
|
|
**kwargs,
|
|
)
|
|
max_len_padded = len(text_encoding.input_ids[0])
|
|
|
|
if min_len_not_padded != max_len_padded:
|
|
if self.tokenizer.padding_side == "right":
|
|
input_ids = [x + [self.tokenizer.pad_token_id] * (max_len_padded - len(x)) for x in input_ids]
|
|
image_embeds_position_mask = [
|
|
x + [0] * (max_len_padded - len(x)) for x in image_embeds_position_mask
|
|
]
|
|
encoding["attention_mask"] = [
|
|
x + [0] * (max_len_padded - len(x)) for x in encoding["attention_mask"]
|
|
]
|
|
elif self.tokenizer.padding_side == "left":
|
|
input_ids = [[self.tokenizer.pad_token_id] * (max_len_padded - len(x)) + x for x in input_ids]
|
|
image_embeds_position_mask = [
|
|
[0] * (max_len_padded - len(x)) + x for x in image_embeds_position_mask
|
|
]
|
|
encoding["attention_mask"] = [
|
|
[0] * (max_len_padded - len(x)) + x for x in encoding["attention_mask"]
|
|
]
|
|
|
|
# un-batch if necessary
|
|
if isinstance(text, str) and return_tensors is None:
|
|
input_ids = input_ids[0]
|
|
encoding["attention_mask"] = encoding["attention_mask"][0]
|
|
image_embeds_position_mask = image_embeds_position_mask[0]
|
|
|
|
# update (with the target tensor type if specified)
|
|
encoding.update(
|
|
BatchEncoding(
|
|
data={
|
|
"input_ids": input_ids,
|
|
"attention_mask": encoding["attention_mask"],
|
|
"image_embeds_position_mask": image_embeds_position_mask,
|
|
},
|
|
tensor_type=return_tensors,
|
|
)
|
|
)
|
|
|
|
return encoding
|
|
|
|
def _check_bboxes_for_single_text(self, bboxes):
|
|
"""
|
|
Check `bboxes` for a single text example. It could be
|
|
- `None`: no bounding box associated to a text.
|
|
- A list with each element being the bounding boxes associated to one `<phrase> ... </phrase>` pair found
|
|
in a text. This could be:
|
|
- `None`: no bounding box associated to a `<phrase> ... </phrase>` pair.
|
|
- A tuple of 2 integers: A single bounding box specified by patch indices.
|
|
- A tuple of 4 float point number: A single bounding box specified by (normalized) coordinates.
|
|
- A list containing the above 2 tuple types: Multiple bounding boxes for a
|
|
`<phrase> ... </phrase>` pair.
|
|
"""
|
|
if bboxes is None:
|
|
return
|
|
elif not isinstance(bboxes, list):
|
|
raise ValueError("`bboxes` (for a single text example) should be `None` or a list.")
|
|
|
|
# `bbox` is the bounding boxes for a single <phrase> </phrase> pair
|
|
for bbox in bboxes:
|
|
if bbox is None:
|
|
continue
|
|
elif not isinstance(bbox, list):
|
|
bbox = [bbox]
|
|
for element in bbox:
|
|
if not isinstance(element, tuple) or not (
|
|
(len(element) == 2 and all(isinstance(x, int) for x in element))
|
|
or (len(element) == 4 and all(isinstance(x, float) for x in element))
|
|
):
|
|
raise ValueError(
|
|
"Each element in `bboxes` (for a single text example) should be either `None`, a tuple containing "
|
|
"2 integers or 4 float point numbers, or a list containing such tuples. Also "
|
|
"make sure the arguments `texts` and `bboxes` passed to `preprocess_text` are both in "
|
|
"batches or both for a single example."
|
|
)
|
|
|
|
def _preprocess_single_example(self, text, image, bboxes, img_info_tokens):
|
|
text = text.strip()
|
|
if image is not None:
|
|
# Add `<image> ... (fake) image tokens ... </image>`
|
|
text = f"{img_info_tokens} {text}"
|
|
|
|
# Add `<object> <patch_idx_xxxx> <patch_idx_yyy> </object>` after `<phrase> phrase text </phrase>`
|
|
text = self._insert_patch_index_tokens(text, bboxes)
|
|
return text
|
|
|
|
def preprocess_examples(
|
|
self,
|
|
texts: Union[TextInput, List[TextInput]],
|
|
images: ImageInput = None,
|
|
bboxes: BboxInput = None,
|
|
num_image_tokens: Optional[int] = 64,
|
|
) -> Union[str, List[str]]:
|
|
"""Add image and bounding box information to `texts` as image and patch index tokens.
|
|
|
|
Args:
|
|
texts (`Union[TextInput, List[TextInput]]`): The texts to be processed.
|
|
images (`ImageInput`, *optional*): The images associated to `texts`.
|
|
bboxes (`Union[List[Tuple[int]], List[Tuple[float]], List[List[Tuple[int]]], List[List[Tuple[float]]]]`, *optional*):
|
|
The bounding bboxes associated to `texts`.
|
|
num_image_tokens (`int`, *optional*, defaults to 64):
|
|
The number of image tokens (used as latent queries). This should corresponds to the `latent_query_num`
|
|
attribute in `Kosmos2Config`.
|
|
|
|
Returns:
|
|
`Union[TextInput, List[TextInput]]`: The processed texts with image and patch index tokens.
|
|
"""
|
|
# These are fake `<image>` tokens enclosed between (the actual) `<image>` token and `</image>`.
|
|
img_tokens = [self.boi_token] * num_image_tokens
|
|
img_info_tokens = " ".join([self.boi_token] + img_tokens + [self.eoi_token])
|
|
|
|
# make batch to simplify processing logic
|
|
batched = True
|
|
if isinstance(texts, str):
|
|
batched = False
|
|
texts = [texts]
|
|
|
|
if images is None:
|
|
images = [None] * len(texts)
|
|
elif not is_batched(images):
|
|
images = [images]
|
|
if len(texts) != len(images):
|
|
raise ValueError(
|
|
f"The number of examples in `texts` and `images` should be the same. Got {len(texts)} v.s. {len(images)} instead."
|
|
)
|
|
|
|
if not batched:
|
|
self._check_bboxes_for_single_text(bboxes)
|
|
bboxes = [bboxes]
|
|
elif bboxes is not None:
|
|
if not isinstance(bboxes, list):
|
|
raise ValueError("`bboxes` should be `None` or a list (as a batch) when `texts` is passed as a batch.")
|
|
for x in bboxes:
|
|
self._check_bboxes_for_single_text(x)
|
|
else:
|
|
bboxes = [None] * len(texts)
|
|
|
|
if len(bboxes) != len(texts):
|
|
raise ValueError(
|
|
f"The number of examples in `texts` and `bboxes` should be the same. Got {len(texts)} v.s. {len(bboxes)} instead."
|
|
)
|
|
|
|
result = [
|
|
self._preprocess_single_example(text, image, bbox, img_info_tokens)
|
|
for text, image, bbox in zip(texts, images, bboxes)
|
|
]
|
|
# un-batch if necessary
|
|
if not batched:
|
|
result = result[0]
|
|
|
|
return result
|
|
|
|
# Copied from transformers.models.blip.processing_blip.BlipProcessor.batch_decode with BertTokenizerFast->PreTrainedTokenizer
|
|
def batch_decode(self, *args, **kwargs):
|
|
"""
|
|
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
|
|
refer to the docstring of this method for more information.
|
|
"""
|
|
return self.tokenizer.batch_decode(*args, **kwargs)
|
|
|
|
# Copied from transformers.models.blip.processing_blip.BlipProcessor.decode with BertTokenizerFast->PreTrainedTokenizer
|
|
def decode(self, *args, **kwargs):
|
|
"""
|
|
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
|
|
the docstring of this method for more information.
|
|
"""
|
|
return self.tokenizer.decode(*args, **kwargs)
|
|
|
|
def post_process_generation(self, text, cleanup_and_extract=True):
|
|
caption = text.split(self.eoi_token)[-1]
|
|
if cleanup_and_extract:
|
|
return clean_text_and_extract_entities_with_bboxes(caption)
|
|
return caption
|
|
|
|
@property
|
|
# Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
|
|
def model_input_names(self):
|
|
tokenizer_input_names = self.tokenizer.model_input_names
|
|
image_processor_input_names = self.image_processor.model_input_names
|
|
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
|
|
|
def _insert_patch_index_tokens(self, text: str, bboxes: Union[List[Tuple[int]], List[Tuple[float]]]) -> str:
|
|
if bboxes is None or len(bboxes) == 0:
|
|
return text
|
|
|
|
matched_phrases = list(re.finditer(r"<phrase>.+?</phrase>", string=text))
|
|
if len(matched_phrases) != len(bboxes):
|
|
raise ValueError(
|
|
f"The number of elements in `bboxes` should be the same as the number of `<phrase> ... </phrase>` pairs in `text`. Got {len(matched_phrases)} v.s. {len(bboxes)} instead."
|
|
)
|
|
|
|
# insert object's patch index tokens
|
|
# the found `<phrase> ... </phrase>` pairs.
|
|
curr_pos = 0
|
|
buffer = []
|
|
for matched, bbox in zip(matched_phrases, bboxes):
|
|
_, end = matched.span()
|
|
buffer.append(text[curr_pos:end])
|
|
curr_pos = end
|
|
# A phrase without bbox
|
|
if bbox is None:
|
|
continue
|
|
# A phrase with a single bbox
|
|
if isinstance(bbox, tuple):
|
|
bbox = [bbox]
|
|
patch_index_strings = []
|
|
# A phrase could have multiple bboxes
|
|
if not all(box is not None for box in bbox):
|
|
raise ValueError(
|
|
"The multiple bounding boxes for a single phrase should not contain any `None` value."
|
|
)
|
|
for box in bbox:
|
|
patch_index_1, patch_index_2 = self._convert_bbox_to_patch_index_tokens(box)
|
|
patch_index_strings.append(f"{patch_index_1} {patch_index_2}")
|
|
# `bbox` being an empty list
|
|
if len(patch_index_strings) == 0:
|
|
continue
|
|
position_str = " </delimiter_of_multi_objects/> ".join(patch_index_strings)
|
|
buffer.append(f"<object> {position_str} </object>")
|
|
# remaining
|
|
if curr_pos < len(text):
|
|
buffer.append(text[curr_pos:])
|
|
|
|
text = "".join(buffer)
|
|
return text
|
|
|
|
def _convert_bbox_to_patch_index_tokens(
|
|
self, bbox: Union[Tuple[int, int], Tuple[float, float, float, float]]
|
|
) -> Tuple[str, str]:
|
|
# already computed patch indices
|
|
if len(bbox) == 2:
|
|
idx_1, idx_2 = bbox
|
|
# bbox specified with (normalized) coordinates
|
|
else:
|
|
# use `self.tokenizer` to get `num_patches_per_side`
|
|
num_patches_per_side = int(math.sqrt(self.num_patch_index_tokens))
|
|
idx_1, idx_2 = coordinate_to_patch_index(bbox, num_patches_per_side)
|
|
|
|
token_1 = f"<patch_index_{str(idx_1).zfill(4)}>"
|
|
token_2 = f"<patch_index_{str(idx_2).zfill(4)}>"
|
|
|
|
return token_1, token_2
|
|
|
|
|
|
def coordinate_to_patch_index(bbox: Tuple[float, float, float, float], num_patches_per_side: int) -> Tuple[int, int]:
|
|
"""Convert a bounding box to a pair of patch indices.
|
|
|
|
Args:
|
|
bbox (`Tuple[float, float, float, float]`):
|
|
The 4 coordinates of the bounding box, with the format being (x1, y1, x2, y2) specifying the upper-left and
|
|
lower-right corners of the box. It should have x2 > x1 and y2 > y1.
|
|
num_patches_per_side (`int`): the number of patches along each side.
|
|
|
|
Returns:
|
|
`Tuple[int, int]`: A pair of patch indices representing the upper-left patch and lower-right patch.
|
|
"""
|
|
(x1, y1, x2, y2) = bbox
|
|
|
|
if not (x2 > x1 and y2 > y1):
|
|
raise ValueError("The coordinates in `bbox` should be `(x1, y1, x2, y2)` with `x2 > x1` and `y2 > y1`.")
|
|
|
|
ul_x = math.floor(x1 * num_patches_per_side)
|
|
ul_y = math.floor(y1 * num_patches_per_side)
|
|
|
|
lr_x = math.ceil(x2 * num_patches_per_side - 1)
|
|
lr_y = math.ceil(y2 * num_patches_per_side - 1)
|
|
|
|
ul_idx = ul_y * num_patches_per_side + ul_x
|
|
lr_idx = lr_y * num_patches_per_side + lr_x
|
|
|
|
return ul_idx, lr_idx
|
|
|
|
|
|
# copied from https://github.com/microsoft/unilm/blob/97e4923e97d3ee10b57e97013556e3fd0d207a9b/kosmos-2/demo/decode_string.py#L35C1-L75C38
|
|
# (with format modifications)
|
|
def patch_index_to_coordinate(ul_idx: int, lr_idx: int, num_patches_per_side: int):
|
|
"""
|
|
Given a grid of length `num_patches_per_side` and the indices of the upper-left and lower-right corners of a
|
|
bounding box, returns the normalized coordinates of the bounding box, in the form (x1, y1, x2, y2).
|
|
|
|
Args:
|
|
ul_idx (`int`): the index of the grid cell that corresponds to the upper-left corner of the bounding box.
|
|
lr_idx (`int`): the index of the grid cell that corresponds to the lower-right corner of the bounding box.
|
|
num_patches_per_side (`int`): the number of patches along each side.
|
|
|
|
Returns:
|
|
`Tuple[float]`: the normalized coordinates of the bounding box, in the form (x1, y1, x2, y2).
|
|
"""
|
|
# Compute the size of each cell in the grid
|
|
cell_size = 1.0 / num_patches_per_side
|
|
|
|
# Compute the x and y indices of the upper-left and lower-right corners of the bounding box
|
|
ul_x = ul_idx % num_patches_per_side
|
|
ul_y = ul_idx // num_patches_per_side
|
|
|
|
lr_x = lr_idx % num_patches_per_side
|
|
lr_y = lr_idx // num_patches_per_side
|
|
|
|
# Compute the normalized coordinates of the bounding box
|
|
if ul_idx == lr_idx:
|
|
x1 = ul_x * cell_size
|
|
y1 = ul_y * cell_size
|
|
x2 = lr_x * cell_size + cell_size
|
|
y2 = lr_y * cell_size + cell_size
|
|
elif ul_x == lr_x or ul_y == lr_y:
|
|
x1 = ul_x * cell_size
|
|
y1 = ul_y * cell_size
|
|
x2 = lr_x * cell_size + cell_size
|
|
y2 = lr_y * cell_size + cell_size
|
|
else:
|
|
x1 = ul_x * cell_size + cell_size / 2
|
|
y1 = ul_y * cell_size + cell_size / 2
|
|
x2 = lr_x * cell_size + cell_size / 2
|
|
y2 = lr_y * cell_size + cell_size / 2
|
|
|
|
return x1, y1, x2, y2
|
|
|
|
|
|
# copied from https://github.com/microsoft/unilm/blob/97e4923e97d3ee10b57e97013556e3fd0d207a9b/kosmos-2/demo/decode_string.py#L4-L33
|
|
# (with format modifications)
|
|
def extract_entities_with_patch_indices(text):
|
|
"""Extract entities contained in `text`. The bounding bboxes is given in the form of patch indices.
|
|
|
|
This functioin is only intended to be used within `clean_text_and_extract_entities_with_bboxes` where further
|
|
processing happens, including converting to normalized coordinates and whitespace character cleaning up.
|
|
|
|
Examples:
|
|
|
|
```python
|
|
>>> text = "<grounding> An image of<phrase> a snowman</phrase><object><patch_index_0044><patch_index_0863></object> warming himself by<phrase> a fire</phrase><object><patch_index_0005><patch_index_0911></object>."
|
|
>>> entities = extract_entities_with_patch_indices(text)
|
|
>>> entities
|
|
[(' a snowman', (31, 41), [(44, 863)]), (' a fire', (130, 137), [(5, 911)])]
|
|
```"""
|
|
# The regular expression pattern for matching the required formats
|
|
pattern = r"(?:(<phrase>([^<]+)</phrase>))?<object>((?:<patch_index_\d+><patch_index_\d+></delimiter_of_multi_objects/>)*<patch_index_\d+><patch_index_\d+>)</object>"
|
|
|
|
# Find all matches in the given string
|
|
matches = re.finditer(pattern, text)
|
|
|
|
# Initialize an empty list to store the valid patch_index combinations
|
|
entities_with_patch_indices = []
|
|
|
|
for match in matches:
|
|
# span of a `phrase` that is between <phrase> and </phrase>
|
|
span = match.span(2)
|
|
phrase_tag, phrase, match_content = match.groups()
|
|
if not phrase_tag:
|
|
phrase = None
|
|
# We take the starting position of `<object>`
|
|
span = (match.span(0)[0], match.span(0)[0])
|
|
|
|
# Split the match_content by the delimiter to get individual patch_index pairs
|
|
patch_index_pairs = match_content.split("</delimiter_of_multi_objects/>")
|
|
|
|
entity_bboxes = []
|
|
for pair in patch_index_pairs:
|
|
# Extract the xxxx and yyyy values from the patch_index pair
|
|
x = re.search(r"<patch_index_(\d+)>", pair)
|
|
y = re.search(r"<patch_index_(\d+)>", pair[1:])
|
|
|
|
if x and y:
|
|
if phrase:
|
|
entity_bboxes.append((int(x.group(1)), int(y.group(1))))
|
|
else:
|
|
entity_bboxes.append((int(x.group(1)), int(y.group(1))))
|
|
|
|
if phrase:
|
|
entities_with_patch_indices.append((phrase, span, entity_bboxes))
|
|
else:
|
|
for bbox in entity_bboxes:
|
|
# fake entity name
|
|
entity = f"<patch_index_{bbox[0]}><patch_index_{bbox[1]}>"
|
|
entities_with_patch_indices.append((entity, span, [bbox]))
|
|
|
|
return entities_with_patch_indices
|
|
|
|
|
|
def adjust_entity_positions(entity, text):
|
|
"""Adjust the positions of the entities in `text` to be relative to the text with special fields removed."""
|
|
entity_name, (start, end) = entity
|
|
# computed the length of strings with special fields (tag tokens, patch index tokens, etc.) removed
|
|
adjusted_start = len(re.sub("<.*?>", "", text[:start]))
|
|
adjusted_end = len(re.sub("<.*?>", "", text[:end]))
|
|
adjusted_entity = (entity_name, (adjusted_start, adjusted_end))
|
|
return adjusted_entity
|
|
|
|
|
|
def _cleanup_spaces(text, entities):
|
|
"""Remove the spaces around the text and the entities in it."""
|
|
new_text = text.strip()
|
|
leading_spaces = len(text) - len(text.lstrip())
|
|
|
|
new_entities = []
|
|
for entity_name, (start, end), bboxes in entities:
|
|
entity_name_leading_spaces = len(entity_name) - len(entity_name.lstrip())
|
|
entity_name_trailing_spaces = len(entity_name) - len(entity_name.rstrip())
|
|
|
|
start = start - leading_spaces + entity_name_leading_spaces
|
|
end = end - leading_spaces - entity_name_trailing_spaces
|
|
entity_name = entity_name.strip()
|
|
|
|
new_entities.append((entity_name, (start, end), bboxes))
|
|
|
|
return new_text, new_entities
|
|
|
|
|
|
# copied from https://github.com/microsoft/unilm/blob/97e4923e97d3ee10b57e97013556e3fd0d207a9b/kosmos-2/demo/decode_string.py#L77-L87
|
|
# (with format modifications)
|
|
def clean_text_and_extract_entities_with_bboxes(text, num_patches_per_side=32):
|
|
"""Remove the tag tokens from `text`, extract entities in it with some cleaning up of white characters.
|
|
|
|
Examples:
|
|
|
|
```python
|
|
>>> text = "<grounding> An image of<phrase> a snowman</phrase><object><patch_index_0044><patch_index_0863></object> warming himself by<phrase> a fire</phrase><object><patch_index_0005><patch_index_0911></object>."
|
|
>>> clean_text, entities = clean_text_and_extract_entities_with_bboxes(text)
|
|
>>> clean_text
|
|
'An image of a snowman warming himself by a fire.'
|
|
|
|
>>> entities
|
|
[('a snowman', (12, 21), [(0.390625, 0.046875, 0.984375, 0.828125)]), ('a fire', (41, 47), [(0.171875, 0.015625, 0.484375, 0.890625)])]
|
|
```"""
|
|
# remove special fields (tag tokens, patch index tokens, etc.)
|
|
processed_text = re.sub("<.*?>", "", text)
|
|
|
|
entities_with_patch_indices = extract_entities_with_patch_indices(text)
|
|
entities = []
|
|
for item in entities_with_patch_indices:
|
|
entity, bboxes = item[0:2], item[2]
|
|
adjusted_entity = adjust_entity_positions(entity, text)
|
|
bboxes_in_coords = [patch_index_to_coordinate(bbox[0], bbox[1], num_patches_per_side) for bbox in bboxes]
|
|
|
|
entities.append(adjusted_entity + (bboxes_in_coords,))
|
|
|
|
return _cleanup_spaces(processed_text, entities)
|