261 lines
12 KiB
Python
261 lines
12 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""PatchTST model configuration"""
|
|
|
|
from typing import List, Optional, Union
|
|
|
|
from transformers.configuration_utils import PretrainedConfig
|
|
from transformers.utils import logging
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
from ..deprecated._archive_maps import PATCHTST_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
|
|
|
|
|
class PatchTSTConfig(PretrainedConfig):
|
|
r"""
|
|
This is the configuration class to store the configuration of an [`PatchTSTModel`]. It is used to instantiate an
|
|
PatchTST model according to the specified arguments, defining the model architecture.
|
|
[ibm/patchtst](https://huggingface.co/ibm/patchtst) architecture.
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
|
|
Args:
|
|
num_input_channels (`int`, *optional*, defaults to 1):
|
|
The size of the target variable which by default is 1 for univariate targets. Would be > 1 in case of
|
|
multivariate targets.
|
|
context_length (`int`, *optional*, defaults to 32):
|
|
The context length of the input sequence.
|
|
distribution_output (`str`, *optional*, defaults to `"student_t"`):
|
|
The distribution emission head for the model when loss is "nll". Could be either "student_t", "normal" or
|
|
"negative_binomial".
|
|
loss (`str`, *optional*, defaults to `"mse"`):
|
|
The loss function for the model corresponding to the `distribution_output` head. For parametric
|
|
distributions it is the negative log likelihood ("nll") and for point estimates it is the mean squared
|
|
error "mse".
|
|
patch_length (`int`, *optional*, defaults to 1):
|
|
Define the patch length of the patchification process.
|
|
patch_stride (`int`, *optional*, defaults to 1):
|
|
Define the stride of the patchification process.
|
|
num_hidden_layers (`int`, *optional*, defaults to 3):
|
|
Number of hidden layers.
|
|
d_model (`int`, *optional*, defaults to 128):
|
|
Dimensionality of the transformer layers.
|
|
num_attention_heads (`int`, *optional*, defaults to 4):
|
|
Number of attention heads for each attention layer in the Transformer encoder.
|
|
share_embedding (`bool`, *optional*, defaults to `True`):
|
|
Sharing the input embedding across all channels.
|
|
channel_attention (`bool`, *optional*, defaults to `False`):
|
|
Activate channel attention block in the Transformer to allow channels to attend each other.
|
|
ffn_dim (`int`, *optional*, defaults to 512):
|
|
Dimension of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
|
norm_type (`str` , *optional*, defaults to `"batchnorm"`):
|
|
Normalization at each Transformer layer. Can be `"batchnorm"` or `"layernorm"`.
|
|
norm_eps (`float`, *optional*, defaults to 1e-05):
|
|
A value added to the denominator for numerical stability of normalization.
|
|
attention_dropout (`float`, *optional*, defaults to 0.0):
|
|
The dropout probability for the attention probabilities.
|
|
dropout (`float`, *optional*, defaults to 0.0):
|
|
The dropout probability for all fully connected layers in the Transformer.
|
|
positional_dropout (`float`, *optional*, defaults to 0.0):
|
|
The dropout probability in the positional embedding layer.
|
|
path_dropout (`float`, *optional*, defaults to 0.0):
|
|
The dropout path in the residual block.
|
|
ff_dropout (`float`, *optional*, defaults to 0.0):
|
|
The dropout probability used between the two layers of the feed-forward networks.
|
|
bias (`bool`, *optional*, defaults to `True`):
|
|
Whether to add bias in the feed-forward networks.
|
|
activation_function (`str`, *optional*, defaults to `"gelu"`):
|
|
The non-linear activation function (string) in the Transformer.`"gelu"` and `"relu"` are supported.
|
|
pre_norm (`bool`, *optional*, defaults to `True`):
|
|
Normalization is applied before self-attention if pre_norm is set to `True`. Otherwise, normalization is
|
|
applied after residual block.
|
|
positional_encoding_type (`str`, *optional*, defaults to `"sincos"`):
|
|
Positional encodings. Options `"random"` and `"sincos"` are supported.
|
|
use_cls_token (`bool`, *optional*, defaults to `False`):
|
|
Whether cls token is used.
|
|
init_std (`float`, *optional*, defaults to 0.02):
|
|
The standard deviation of the truncated normal weight initialization distribution.
|
|
share_projection (`bool`, *optional*, defaults to `True`):
|
|
Sharing the projection layer across different channels in the forecast head.
|
|
scaling (`Union`, *optional*, defaults to `"std"`):
|
|
Whether to scale the input targets via "mean" scaler, "std" scaler or no scaler if `None`. If `True`, the
|
|
scaler is set to "mean".
|
|
do_mask_input (`bool`, *optional*):
|
|
Apply masking during the pretraining.
|
|
mask_type (`str`, *optional*, defaults to `"random"`):
|
|
Masking type. Only `"random"` and `"forecast"` are currently supported.
|
|
random_mask_ratio (`float`, *optional*, defaults to 0.5):
|
|
Masking ratio applied to mask the input data during random pretraining.
|
|
num_forecast_mask_patches (`int` or `list`, *optional*, defaults to `[2]`):
|
|
Number of patches to be masked at the end of each batch sample. If it is an integer,
|
|
all the samples in the batch will have the same number of masked patches. If it is a list,
|
|
samples in the batch will be randomly masked by numbers defined in the list. This argument is only used
|
|
for forecast pretraining.
|
|
channel_consistent_masking (`bool`, *optional*, defaults to `False`):
|
|
If channel consistent masking is True, all the channels will have the same masking pattern.
|
|
unmasked_channel_indices (`list`, *optional*):
|
|
Indices of channels that are not masked during pretraining. Values in the list are number between 1 and
|
|
`num_input_channels`
|
|
mask_value (`int`, *optional*, defaults to 0):
|
|
Values in the masked patches will be filled by `mask_value`.
|
|
pooling_type (`str`, *optional*, defaults to `"mean"`):
|
|
Pooling of the embedding. `"mean"`, `"max"` and `None` are supported.
|
|
head_dropout (`float`, *optional*, defaults to 0.0):
|
|
The dropout probability for head.
|
|
prediction_length (`int`, *optional*, defaults to 24):
|
|
The prediction horizon that the model will output.
|
|
num_targets (`int`, *optional*, defaults to 1):
|
|
Number of targets for regression and classification tasks. For classification, it is the number of
|
|
classes.
|
|
output_range (`list`, *optional*):
|
|
Output range for regression task. The range of output values can be set to enforce the model to produce
|
|
values within a range.
|
|
num_parallel_samples (`int`, *optional*, defaults to 100):
|
|
The number of samples is generated in parallel for probabilistic prediction.
|
|
|
|
|
|
```python
|
|
>>> from transformers import PatchTSTConfig, PatchTSTModel
|
|
|
|
>>> # Initializing an PatchTST configuration with 12 time steps for prediction
|
|
>>> configuration = PatchTSTConfig(prediction_length=12)
|
|
|
|
>>> # Randomly initializing a model (with random weights) from the configuration
|
|
>>> model = PatchTSTModel(configuration)
|
|
|
|
>>> # Accessing the model configuration
|
|
>>> configuration = model.config
|
|
```"""
|
|
|
|
model_type = "patchtst"
|
|
attribute_map = {
|
|
"hidden_size": "d_model",
|
|
"num_attention_heads": "num_attention_heads",
|
|
"num_hidden_layers": "num_hidden_layers",
|
|
}
|
|
|
|
def __init__(
|
|
self,
|
|
# time series specific configuration
|
|
num_input_channels: int = 1,
|
|
context_length: int = 32,
|
|
distribution_output: str = "student_t",
|
|
loss: str = "mse",
|
|
# PatchTST arguments
|
|
patch_length: int = 1,
|
|
patch_stride: int = 1,
|
|
# Transformer architecture configuration
|
|
num_hidden_layers: int = 3,
|
|
d_model: int = 128,
|
|
num_attention_heads: int = 4,
|
|
share_embedding: bool = True,
|
|
channel_attention: bool = False,
|
|
ffn_dim: int = 512,
|
|
norm_type: str = "batchnorm",
|
|
norm_eps: float = 1e-05,
|
|
attention_dropout: float = 0.0,
|
|
dropout: float = 0.0,
|
|
positional_dropout: float = 0.0,
|
|
path_dropout: float = 0.0,
|
|
ff_dropout: float = 0.0,
|
|
bias: bool = True,
|
|
activation_function: str = "gelu",
|
|
pre_norm: bool = True,
|
|
positional_encoding_type: str = "sincos",
|
|
use_cls_token: bool = False,
|
|
init_std: float = 0.02,
|
|
share_projection: bool = True,
|
|
scaling: Optional[Union[str, bool]] = "std",
|
|
# mask pretraining
|
|
do_mask_input: Optional[bool] = None,
|
|
mask_type: str = "random",
|
|
random_mask_ratio: float = 0.5,
|
|
num_forecast_mask_patches: Optional[Union[List[int], int]] = [2],
|
|
channel_consistent_masking: Optional[bool] = False,
|
|
unmasked_channel_indices: Optional[List[int]] = None,
|
|
mask_value: int = 0,
|
|
# head
|
|
pooling_type: str = "mean",
|
|
head_dropout: float = 0.0,
|
|
prediction_length: int = 24,
|
|
num_targets: int = 1,
|
|
output_range: Optional[List] = None,
|
|
# distribution head
|
|
num_parallel_samples: int = 100,
|
|
**kwargs,
|
|
):
|
|
# time series specific configuration
|
|
self.context_length = context_length
|
|
self.num_input_channels = num_input_channels # n_vars
|
|
self.loss = loss
|
|
self.distribution_output = distribution_output
|
|
self.num_parallel_samples = num_parallel_samples
|
|
|
|
# Transformer architecture configuration
|
|
self.d_model = d_model
|
|
self.num_attention_heads = num_attention_heads
|
|
self.ffn_dim = ffn_dim
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.dropout = dropout
|
|
self.attention_dropout = attention_dropout
|
|
self.share_embedding = share_embedding
|
|
self.channel_attention = channel_attention
|
|
self.norm_type = norm_type
|
|
self.norm_eps = norm_eps
|
|
self.positional_dropout = positional_dropout
|
|
self.path_dropout = path_dropout
|
|
self.ff_dropout = ff_dropout
|
|
self.bias = bias
|
|
self.activation_function = activation_function
|
|
self.pre_norm = pre_norm
|
|
self.positional_encoding_type = positional_encoding_type
|
|
self.use_cls_token = use_cls_token
|
|
self.init_std = init_std
|
|
self.scaling = scaling
|
|
|
|
# PatchTST parameters
|
|
self.patch_length = patch_length
|
|
self.patch_stride = patch_stride
|
|
|
|
# Mask pretraining
|
|
self.do_mask_input = do_mask_input
|
|
self.mask_type = mask_type
|
|
self.random_mask_ratio = random_mask_ratio # for random masking
|
|
self.num_forecast_mask_patches = num_forecast_mask_patches # for forecast masking
|
|
self.channel_consistent_masking = channel_consistent_masking
|
|
self.unmasked_channel_indices = unmasked_channel_indices
|
|
self.mask_value = mask_value
|
|
|
|
# general head params
|
|
self.pooling_type = pooling_type
|
|
self.head_dropout = head_dropout
|
|
|
|
# For prediction head
|
|
self.share_projection = share_projection
|
|
self.prediction_length = prediction_length
|
|
|
|
# For prediction and regression head
|
|
self.num_parallel_samples = num_parallel_samples
|
|
|
|
# Regression
|
|
self.num_targets = num_targets
|
|
self.output_range = output_range
|
|
|
|
super().__init__(**kwargs)
|