ai-content-maker/.venv/Lib/site-packages/transformers/models/perceiver/configuration_perceiver.py

245 lines
12 KiB
Python

# coding=utf-8
# Copyright Deepmind and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Perceiver model configuration"""
from collections import OrderedDict
from typing import Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...feature_extraction_utils import FeatureExtractionMixin
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType, logging
logger = logging.get_logger(__name__)
from ..deprecated._archive_maps import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
class PerceiverConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`PerceiverModel`]. It is used to instantiate an
Perceiver model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the Perceiver
[deepmind/language-perceiver](https://huggingface.co/deepmind/language-perceiver) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
num_latents (`int`, *optional*, defaults to 256):
The number of latents.
d_latents (`int`, *optional*, defaults to 1280):
Dimension of the latent embeddings.
d_model (`int`, *optional*, defaults to 768):
Dimension of the inputs. Should only be provided in case [*PerceiverTextPreprocessor*] is used or no
preprocessor is provided.
num_blocks (`int`, *optional*, defaults to 1):
Number of blocks in the Transformer encoder.
num_self_attends_per_block (`int`, *optional*, defaults to 26):
The number of self-attention layers per block.
num_self_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each self-attention layer in the Transformer encoder.
num_cross_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each cross-attention layer in the Transformer encoder.
qk_channels (`int`, *optional*):
Dimension to project the queries + keys before applying attention in the cross-attention and self-attention
layers of the encoder. Will default to preserving the dimension of the queries if not specified.
v_channels (`int`, *optional*):
Dimension to project the values before applying attention in the cross-attention and self-attention layers
of the encoder. Will default to preserving the dimension of the queries if not specified.
cross_attention_shape_for_attention (`str`, *optional*, defaults to `"kv"`):
Dimension to use when downsampling the queries and keys in the cross-attention layer of the encoder.
self_attention_widening_factor (`int`, *optional*, defaults to 1):
Dimension of the feed-forward layer in the cross-attention layer of the Transformer encoder.
cross_attention_widening_factor (`int`, *optional*, defaults to 1):
Dimension of the feed-forward layer in the self-attention layers of the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
use_query_residual (`float`, *optional*, defaults to `True`):
Whether to add a query residual in the cross-attention layer of the encoder.
vocab_size (`int`, *optional*, defaults to 262):
Vocabulary size for the masked language modeling model.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that the masked language modeling model might ever be used with. Typically set
this to something large just in case (e.g., 512 or 1024 or 2048).
image_size (`int`, *optional*, defaults to 56):
Size of the images after preprocessing, for [`PerceiverForImageClassificationLearned`].
train_size (`List[int]`, *optional*, defaults to `[368, 496]`):
Training size of the images for the optical flow model.
num_frames (`int`, *optional*, defaults to 16):
Number of video frames used for the multimodal autoencoding model.
audio_samples_per_frame (`int`, *optional*, defaults to 1920):
Number of audio samples per frame for the multimodal autoencoding model.
samples_per_patch (`int`, *optional*, defaults to 16):
Number of audio samples per patch when preprocessing the audio for the multimodal autoencoding model.
output_shape (`List[int]`, *optional*, defaults to `[1, 16, 224, 224]`):
Shape of the output (batch_size, num_frames, height, width) for the video decoder queries of the multimodal
autoencoding model. This excludes the channel dimension.
output_num_channels (`int`, *optional*, defaults to 512):
Number of output channels for each modalitiy decoder.
Example:
```python
>>> from transformers import PerceiverModel, PerceiverConfig
>>> # Initializing a Perceiver deepmind/language-perceiver style configuration
>>> configuration = PerceiverConfig()
>>> # Initializing a model from the deepmind/language-perceiver style configuration
>>> model = PerceiverModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "perceiver"
def __init__(
self,
num_latents=256,
d_latents=1280,
d_model=768,
num_blocks=1,
num_self_attends_per_block=26,
num_self_attention_heads=8,
num_cross_attention_heads=8,
qk_channels=None,
v_channels=None,
cross_attention_shape_for_attention="kv",
self_attention_widening_factor=1,
cross_attention_widening_factor=1,
hidden_act="gelu",
attention_probs_dropout_prob=0.1,
initializer_range=0.02,
layer_norm_eps=1e-12,
use_query_residual=True,
vocab_size=262,
max_position_embeddings=2048,
image_size=56,
train_size=[368, 496],
num_frames=16,
audio_samples_per_frame=1920,
samples_per_patch=16,
output_shape=[1, 16, 224, 224],
output_num_channels=512,
_label_trainable_num_channels=1024,
**kwargs,
):
super().__init__(**kwargs)
self.num_latents = num_latents
self.d_latents = d_latents
self.d_model = d_model
self.num_blocks = num_blocks
self.num_self_attends_per_block = num_self_attends_per_block
self.num_self_attention_heads = num_self_attention_heads
self.num_cross_attention_heads = num_cross_attention_heads
self.qk_channels = qk_channels
self.v_channels = v_channels
self.cross_attention_shape_for_attention = cross_attention_shape_for_attention
self.self_attention_widening_factor = self_attention_widening_factor
self.cross_attention_widening_factor = cross_attention_widening_factor
self.hidden_act = hidden_act
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.use_query_residual = use_query_residual
# masked language modeling attributes
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
# image classification attributes
self.image_size = image_size
# flow attributes
self.train_size = train_size
# multimodal autoencoding attributes
self.num_frames = num_frames
self.audio_samples_per_frame = audio_samples_per_frame
self.samples_per_patch = samples_per_patch
self.output_shape = output_shape
self.output_num_channels = output_num_channels
self._label_trainable_num_channels = _label_trainable_num_channels
class PerceiverOnnxConfig(OnnxConfig):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
else:
dynamic_axis = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("inputs", dynamic_axis),
("attention_mask", dynamic_axis),
]
)
@property
def atol_for_validation(self) -> float:
return 1e-4
def generate_dummy_inputs(
self,
preprocessor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"],
batch_size: int = -1,
seq_length: int = -1,
num_choices: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
num_channels: int = 3,
image_width: int = 40,
image_height: int = 40,
) -> Mapping[str, Any]:
# copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified
if isinstance(preprocessor, PreTrainedTokenizerBase):
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
batch_size = compute_effective_axis_dimension(
batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0
)
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
token_to_add = preprocessor.num_special_tokens_to_add(is_pair)
seq_length = compute_effective_axis_dimension(
seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add
)
# Generate dummy inputs according to compute batch and sequence
dummy_input = [" ".join(["a"]) * seq_length] * batch_size
inputs = dict(preprocessor(dummy_input, return_tensors=framework))
inputs["inputs"] = inputs.pop("input_ids")
return inputs
elif isinstance(preprocessor, FeatureExtractionMixin) and preprocessor.model_input_names[0] == "pixel_values":
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
dummy_input = self._generate_dummy_images(batch_size, num_channels, image_height, image_width)
inputs = dict(preprocessor(images=dummy_input, return_tensors=framework))
inputs["inputs"] = inputs.pop("pixel_values")
return inputs
else:
raise ValueError(
"Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor."
)