199 lines
7.8 KiB
Python
199 lines
7.8 KiB
Python
# coding=utf-8
|
|
# Copyright 2021 The HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" Tokenization class for Perceiver."""
|
|
|
|
|
|
from typing import Dict, List, Optional, Tuple
|
|
|
|
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
|
|
from ...utils import logging
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
class PerceiverTokenizer(PreTrainedTokenizer):
|
|
"""
|
|
Construct a Perceiver tokenizer. The Perceiver simply uses raw bytes utf-8 encoding.
|
|
|
|
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
|
this superclass for more information regarding those methods.
|
|
|
|
Args:
|
|
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
|
|
The token used for padding, for example when batching sequences of different lengths.
|
|
bos_token (`str`, *optional*, defaults to `"[BOS]"`):
|
|
The BOS token (reserved in the vocab, but not actually used).
|
|
eos_token (`str`, *optional*, defaults to `"[EOS]"`):
|
|
The end of sequence token (reserved in the vocab, but not actually used).
|
|
|
|
<Tip>
|
|
|
|
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
|
The token used is the `sep_token`.
|
|
|
|
</Tip>
|
|
|
|
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
|
|
The MASK token, useful for masked language modeling.
|
|
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
|
|
The CLS token (reserved in the vocab, but not actually used).
|
|
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
|
|
The separator token, which is used when building a sequence from two sequences.
|
|
|
|
"""
|
|
|
|
model_input_names = ["input_ids", "attention_mask"]
|
|
|
|
def __init__(
|
|
self,
|
|
pad_token="[PAD]",
|
|
bos_token="[BOS]",
|
|
eos_token="[EOS]",
|
|
mask_token="[MASK]",
|
|
cls_token="[CLS]",
|
|
sep_token="[SEP]",
|
|
model_max_length=2048,
|
|
**kwargs,
|
|
) -> None:
|
|
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
|
|
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
|
|
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
|
|
mask_token = AddedToken(mask_token, lstrip=False, rstrip=False) if isinstance(mask_token, str) else mask_token
|
|
cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token
|
|
sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
|
|
|
|
self._utf_vocab_size = 2**8 # utf is 8 bits
|
|
|
|
# Since these tokens are not part of the vocabulary, we manually add them
|
|
self._added_tokens_decoder: Dict[str, int] = {
|
|
0: pad_token,
|
|
1: bos_token,
|
|
2: eos_token,
|
|
3: mask_token,
|
|
4: cls_token,
|
|
5: sep_token,
|
|
}
|
|
self._num_special_tokens = len(self._added_tokens_decoder)
|
|
super().__init__(
|
|
pad_token=pad_token,
|
|
bos_token=bos_token,
|
|
eos_token=eos_token,
|
|
mask_token=mask_token,
|
|
cls_token=cls_token,
|
|
sep_token=sep_token,
|
|
model_max_length=model_max_length,
|
|
**kwargs,
|
|
)
|
|
|
|
def get_vocab(self) -> Dict[str, int]:
|
|
vocab = {}
|
|
for i in range(self._utf_vocab_size):
|
|
token = chr(i)
|
|
vocab[token] = i + self._num_special_tokens
|
|
vocab.update(self.added_tokens_encoder)
|
|
return vocab
|
|
|
|
@property
|
|
def vocab_size(self):
|
|
return self._utf_vocab_size
|
|
|
|
def get_special_tokens_mask(
|
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
|
) -> List[int]:
|
|
"""
|
|
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
|
special tokens using the tokenizer `prepare_for_model` method.
|
|
|
|
Args:
|
|
token_ids_0 (`List[int]`):
|
|
List of IDs.
|
|
token_ids_1 (`List[int]`, *optional*):
|
|
Optional second list of IDs for sequence pairs.
|
|
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
|
Whether or not the token list is already formatted with special tokens for the model.
|
|
|
|
Returns:
|
|
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
|
"""
|
|
if already_has_special_tokens:
|
|
return super().get_special_tokens_mask(
|
|
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
|
)
|
|
|
|
# normal case: some special tokens
|
|
if token_ids_1 is None:
|
|
return [1] + [0] * len(token_ids_0) + [1]
|
|
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
|
|
|
def build_inputs_with_special_tokens(
|
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
|
) -> List[int]:
|
|
"""
|
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks. A sequence has the
|
|
following format:
|
|
|
|
- single sequence: `[CLS] X [SEP]`
|
|
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
|
|
|
Args:
|
|
token_ids_0 (`List[int]`):
|
|
List of IDs to which the special tokens will be added.
|
|
token_ids_1 (`List[int]`, *optional*):
|
|
Optional second list of IDs for sequence pairs.
|
|
|
|
Returns:
|
|
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
|
"""
|
|
if token_ids_1 is None:
|
|
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
|
else:
|
|
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + token_ids_1 + [self.sep_token_id]
|
|
|
|
def _tokenize(self, text: str) -> List[str]:
|
|
"""Take as input a string and return a list of strings (tokens) for words/sub-words"""
|
|
tokens = [chr(i) for i in text.encode("utf-8")]
|
|
return tokens
|
|
|
|
def _convert_token_to_id(self, token):
|
|
"""Converts a token (str) in an id using the vocab."""
|
|
if len(token) != 1:
|
|
token_id = self.unk_token_id
|
|
else:
|
|
token_id = ord(token) + self._num_special_tokens
|
|
return token_id
|
|
|
|
def _convert_id_to_token(self, index):
|
|
"""Converts an index (integer) in a token (str) using the vocab."""
|
|
token = chr(index - self._num_special_tokens)
|
|
return token
|
|
|
|
# TODO @ArthurZ refactor this as well....
|
|
def convert_tokens_to_string(self, tokens):
|
|
"""Converts a sequence of tokens (string) in a single string."""
|
|
bstring = b""
|
|
for token in tokens:
|
|
if token in self.added_tokens_encoder:
|
|
tok_string = str(token).encode("utf-8")
|
|
else:
|
|
tok_string = bytes([ord(token)])
|
|
bstring += tok_string
|
|
string = bstring.decode("utf-8", errors="replace")
|
|
return string
|
|
|
|
# PerceiverTokenizer has no vocab file
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
|
return ()
|