350 lines
13 KiB
Python
350 lines
13 KiB
Python
# coding=utf-8
|
|
# Copyright (c) 2020, VinAI Research and the HuggingFace Inc. team.
|
|
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" Tokenization classes for PhoBERT"""
|
|
|
|
|
|
import os
|
|
import re
|
|
from shutil import copyfile
|
|
from typing import List, Optional, Tuple
|
|
|
|
from ...tokenization_utils import PreTrainedTokenizer
|
|
from ...utils import logging
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
VOCAB_FILES_NAMES = {
|
|
"vocab_file": "vocab.txt",
|
|
"merges_file": "bpe.codes",
|
|
}
|
|
|
|
|
|
def get_pairs(word):
|
|
"""
|
|
Return set of symbol pairs in a word.
|
|
|
|
Word is represented as tuple of symbols (symbols being variable-length strings).
|
|
"""
|
|
pairs = set()
|
|
prev_char = word[0]
|
|
for char in word[1:]:
|
|
pairs.add((prev_char, char))
|
|
prev_char = char
|
|
|
|
pairs = set(pairs)
|
|
return pairs
|
|
|
|
|
|
class PhobertTokenizer(PreTrainedTokenizer):
|
|
"""
|
|
Construct a PhoBERT tokenizer. Based on Byte-Pair-Encoding.
|
|
|
|
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
|
this superclass for more information regarding those methods.
|
|
|
|
Args:
|
|
vocab_file (`str`):
|
|
Path to the vocabulary file.
|
|
merges_file (`str`):
|
|
Path to the merges file.
|
|
bos_token (`st`, *optional*, defaults to `"<s>"`):
|
|
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
|
|
|
<Tip>
|
|
|
|
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
|
sequence. The token used is the `cls_token`.
|
|
|
|
</Tip>
|
|
|
|
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
|
The end of sequence token.
|
|
|
|
<Tip>
|
|
|
|
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
|
The token used is the `sep_token`.
|
|
|
|
</Tip>
|
|
|
|
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
|
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
|
sequence classification or for a text and a question for question answering. It is also used as the last
|
|
token of a sequence built with special tokens.
|
|
cls_token (`str`, *optional*, defaults to `"<s>"`):
|
|
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
|
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
|
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
|
token instead.
|
|
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
|
The token used for padding, for example when batching sequences of different lengths.
|
|
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
|
The token used for masking values. This is the token used when training this model with masked language
|
|
modeling. This is the token which the model will try to predict.
|
|
"""
|
|
|
|
vocab_files_names = VOCAB_FILES_NAMES
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_file,
|
|
merges_file,
|
|
bos_token="<s>",
|
|
eos_token="</s>",
|
|
sep_token="</s>",
|
|
cls_token="<s>",
|
|
unk_token="<unk>",
|
|
pad_token="<pad>",
|
|
mask_token="<mask>",
|
|
**kwargs,
|
|
):
|
|
self.vocab_file = vocab_file
|
|
self.merges_file = merges_file
|
|
|
|
self.encoder = {}
|
|
self.encoder[str(bos_token)] = 0
|
|
self.encoder[str(pad_token)] = 1
|
|
self.encoder[str(eos_token)] = 2
|
|
self.encoder[str(unk_token)] = 3
|
|
|
|
self.add_from_file(vocab_file)
|
|
|
|
self.decoder = {v: k for k, v in self.encoder.items()}
|
|
|
|
with open(merges_file, encoding="utf-8") as merges_handle:
|
|
merges = merges_handle.read().split("\n")[:-1]
|
|
merges = [tuple(merge.split()[:-1]) for merge in merges]
|
|
|
|
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
|
self.cache = {}
|
|
|
|
super().__init__(
|
|
bos_token=bos_token,
|
|
eos_token=eos_token,
|
|
unk_token=unk_token,
|
|
sep_token=sep_token,
|
|
cls_token=cls_token,
|
|
pad_token=pad_token,
|
|
mask_token=mask_token,
|
|
**kwargs,
|
|
)
|
|
|
|
def build_inputs_with_special_tokens(
|
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
|
) -> List[int]:
|
|
"""
|
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
|
adding special tokens. A PhoBERT sequence has the following format:
|
|
|
|
- single sequence: `<s> X </s>`
|
|
- pair of sequences: `<s> A </s></s> B </s>`
|
|
|
|
Args:
|
|
token_ids_0 (`List[int]`):
|
|
List of IDs to which the special tokens will be added.
|
|
token_ids_1 (`List[int]`, *optional*):
|
|
Optional second list of IDs for sequence pairs.
|
|
|
|
Returns:
|
|
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
|
"""
|
|
|
|
if token_ids_1 is None:
|
|
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
|
cls = [self.cls_token_id]
|
|
sep = [self.sep_token_id]
|
|
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
|
|
|
|
def get_special_tokens_mask(
|
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
|
) -> List[int]:
|
|
"""
|
|
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
|
special tokens using the tokenizer `prepare_for_model` method.
|
|
|
|
Args:
|
|
token_ids_0 (`List[int]`):
|
|
List of IDs.
|
|
token_ids_1 (`List[int]`, *optional*):
|
|
Optional second list of IDs for sequence pairs.
|
|
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
|
Whether or not the token list is already formatted with special tokens for the model.
|
|
|
|
Returns:
|
|
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
|
"""
|
|
|
|
if already_has_special_tokens:
|
|
return super().get_special_tokens_mask(
|
|
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
|
)
|
|
|
|
if token_ids_1 is None:
|
|
return [1] + ([0] * len(token_ids_0)) + [1]
|
|
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
|
|
|
def create_token_type_ids_from_sequences(
|
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
|
) -> List[int]:
|
|
"""
|
|
Create a mask from the two sequences passed to be used in a sequence-pair classification task. PhoBERT does not
|
|
make use of token type ids, therefore a list of zeros is returned.
|
|
|
|
Args:
|
|
token_ids_0 (`List[int]`):
|
|
List of IDs.
|
|
token_ids_1 (`List[int]`, *optional*):
|
|
Optional second list of IDs for sequence pairs.
|
|
|
|
Returns:
|
|
`List[int]`: List of zeros.
|
|
"""
|
|
|
|
sep = [self.sep_token_id]
|
|
cls = [self.cls_token_id]
|
|
|
|
if token_ids_1 is None:
|
|
return len(cls + token_ids_0 + sep) * [0]
|
|
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
|
|
|
|
@property
|
|
def vocab_size(self):
|
|
return len(self.encoder)
|
|
|
|
def get_vocab(self):
|
|
return dict(self.encoder, **self.added_tokens_encoder)
|
|
|
|
def bpe(self, token):
|
|
if token in self.cache:
|
|
return self.cache[token]
|
|
word = tuple(token)
|
|
word = tuple(list(word[:-1]) + [word[-1] + "</w>"])
|
|
pairs = get_pairs(word)
|
|
|
|
if not pairs:
|
|
return token
|
|
|
|
while True:
|
|
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
|
if bigram not in self.bpe_ranks:
|
|
break
|
|
first, second = bigram
|
|
new_word = []
|
|
i = 0
|
|
while i < len(word):
|
|
try:
|
|
j = word.index(first, i)
|
|
except ValueError:
|
|
new_word.extend(word[i:])
|
|
break
|
|
else:
|
|
new_word.extend(word[i:j])
|
|
i = j
|
|
|
|
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
|
new_word.append(first + second)
|
|
i += 2
|
|
else:
|
|
new_word.append(word[i])
|
|
i += 1
|
|
new_word = tuple(new_word)
|
|
word = new_word
|
|
if len(word) == 1:
|
|
break
|
|
else:
|
|
pairs = get_pairs(word)
|
|
word = "@@ ".join(word)
|
|
word = word[:-4]
|
|
self.cache[token] = word
|
|
return word
|
|
|
|
def _tokenize(self, text):
|
|
"""Tokenize a string."""
|
|
split_tokens = []
|
|
|
|
words = re.findall(r"\S+\n?", text)
|
|
|
|
for token in words:
|
|
split_tokens.extend(list(self.bpe(token).split(" ")))
|
|
return split_tokens
|
|
|
|
def _convert_token_to_id(self, token):
|
|
"""Converts a token (str) in an id using the vocab."""
|
|
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
|
|
|
def _convert_id_to_token(self, index):
|
|
"""Converts an index (integer) in a token (str) using the vocab."""
|
|
return self.decoder.get(index, self.unk_token)
|
|
|
|
def convert_tokens_to_string(self, tokens):
|
|
"""Converts a sequence of tokens (string) in a single string."""
|
|
out_string = " ".join(tokens).replace("@@ ", "").strip()
|
|
return out_string
|
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
|
if not os.path.isdir(save_directory):
|
|
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
|
return
|
|
out_vocab_file = os.path.join(
|
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
|
)
|
|
out_merge_file = os.path.join(
|
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
|
|
)
|
|
|
|
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
|
copyfile(self.vocab_file, out_vocab_file)
|
|
elif not os.path.isfile(self.vocab_file):
|
|
with open(out_vocab_file, "wb") as fi:
|
|
content_spiece_model = self.sp_model.serialized_model_proto()
|
|
fi.write(content_spiece_model)
|
|
|
|
if os.path.abspath(self.merges_file) != os.path.abspath(out_merge_file):
|
|
copyfile(self.merges_file, out_merge_file)
|
|
|
|
return out_vocab_file, out_merge_file
|
|
|
|
# def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
|
|
# filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens))
|
|
# tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens)
|
|
# tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far)
|
|
# return ''.join(tokens_generated_so_far)
|
|
|
|
def add_from_file(self, f):
|
|
"""
|
|
Loads a pre-existing dictionary from a text file and adds its symbols to this instance.
|
|
"""
|
|
if isinstance(f, str):
|
|
try:
|
|
with open(f, "r", encoding="utf-8") as fd:
|
|
self.add_from_file(fd)
|
|
except FileNotFoundError as fnfe:
|
|
raise fnfe
|
|
except UnicodeError:
|
|
raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset")
|
|
return
|
|
|
|
lines = f.readlines()
|
|
for lineTmp in lines:
|
|
line = lineTmp.strip()
|
|
idx = line.rfind(" ")
|
|
if idx == -1:
|
|
raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'")
|
|
word = line[:idx]
|
|
self.encoder[word] = len(self.encoder)
|