ai-content-maker/.venv/Lib/site-packages/transformers/models/sam/configuration_sam.py

310 lines
14 KiB
Python

# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" SAM model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
from ..deprecated._archive_maps import SAM_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
class SamPromptEncoderConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`SamPromptEncoder`]. The [`SamPromptEncoder`]
module is used to encode the input 2D points and bounding boxes. Instantiating a configuration defaults will yield
a similar configuration to that of the SAM-vit-h
[facebook/sam-vit-huge](https://huggingface.co/facebook/sam-vit-huge) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 256):
Dimensionality of the hidden states.
image_size (`int`, *optional*, defaults to 1024):
The expected output resolution of the image.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
mask_input_channels (`int`, *optional*, defaults to 16):
The number of channels to be fed to the `MaskDecoder` module.
num_point_embeddings (`int`, *optional*, defaults to 4):
The number of point embeddings to be used.
hidden_act (`str`, *optional*, defaults to `"gelu"`):
The non-linear activation function in the encoder and pooler.
"""
def __init__(
self,
hidden_size=256,
image_size=1024,
patch_size=16,
mask_input_channels=16,
num_point_embeddings=4,
hidden_act="gelu",
layer_norm_eps=1e-6,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.image_size = image_size
self.patch_size = patch_size
self.image_embedding_size = image_size // patch_size
self.mask_input_channels = mask_input_channels
self.num_point_embeddings = num_point_embeddings
self.hidden_act = hidden_act
self.layer_norm_eps = layer_norm_eps
class SamMaskDecoderConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`SamMaskDecoder`]. It is used to instantiate a SAM
mask decoder to the specified arguments, defining the model architecture. Instantiating a configuration defaults
will yield a similar configuration to that of the SAM-vit-h
[facebook/sam-vit-huge](https://huggingface.co/facebook/sam-vit-huge) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 256):
Dimensionality of the hidden states.
hidden_act (`str`, *optional*, defaults to `"relu"`):
The non-linear activation function used inside the `SamMaskDecoder` module.
mlp_dim (`int`, *optional*, defaults to 2048):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 2):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer encoder.
attention_downsample_rate (`int`, *optional*, defaults to 2):
The downsampling rate of the attention layer.
num_multimask_outputs (`int`, *optional*, defaults to 3):
The number of outputs from the `SamMaskDecoder` module. In the Segment Anything paper, this is set to 3.
iou_head_depth (`int`, *optional*, defaults to 3):
The number of layers in the IoU head module.
iou_head_hidden_dim (`int`, *optional*, defaults to 256):
The dimensionality of the hidden states in the IoU head module.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
"""
def __init__(
self,
hidden_size=256,
hidden_act="relu",
mlp_dim=2048,
num_hidden_layers=2,
num_attention_heads=8,
attention_downsample_rate=2,
num_multimask_outputs=3,
iou_head_depth=3,
iou_head_hidden_dim=256,
layer_norm_eps=1e-6,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.hidden_act = hidden_act
self.mlp_dim = mlp_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.attention_downsample_rate = attention_downsample_rate
self.num_multimask_outputs = num_multimask_outputs
self.iou_head_depth = iou_head_depth
self.iou_head_hidden_dim = iou_head_hidden_dim
self.layer_norm_eps = layer_norm_eps
class SamVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`SamVisionModel`]. It is used to instantiate a SAM
vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration
defaults will yield a similar configuration to that of the SAM ViT-h
[facebook/sam-vit-huge](https://huggingface.co/facebook/sam-vit-huge) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
output_channels (`int`, *optional*, defaults to 256):
Dimensionality of the output channels in the Patch Encoder.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
num_channels (`int`, *optional*, defaults to 3):
Number of channels in the input image.
image_size (`int`, *optional*, defaults to 1024):
Expected resolution. Target size of the resized input image.
patch_size (`int`, *optional*, defaults to 16):
Size of the patches to be extracted from the input image.
hidden_act (`str`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string)
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 1e-10):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether to add a bias to query, key, value projections.
mlp_ratio (`float`, *optional*, defaults to 4.0):
Ratio of mlp hidden dim to embedding dim.
use_abs_pos (`bool`, *optional*, defaults to `True`):
Whether to use absolute position embedding.
use_rel_pos (`bool`, *optional*, defaults to `True`):
Whether to use relative position embedding.
window_size (`int`, *optional*, defaults to 14):
Window size for relative position.
global_attn_indexes (`List[int]`, *optional*, defaults to `[2, 5, 8, 11]`):
The indexes of the global attention layers.
num_pos_feats (`int`, *optional*, defaults to 128):
The dimensionality of the position embedding.
mlp_dim (`int`, *optional*):
The dimensionality of the MLP layer in the Transformer encoder. If `None`, defaults to `mlp_ratio *
hidden_size`.
"""
def __init__(
self,
hidden_size=768,
output_channels=256,
num_hidden_layers=12,
num_attention_heads=12,
num_channels=3,
image_size=1024,
patch_size=16,
hidden_act="gelu",
layer_norm_eps=1e-06,
attention_dropout=0.0,
initializer_range=1e-10,
qkv_bias=True,
mlp_ratio=4.0,
use_abs_pos=True,
use_rel_pos=True,
window_size=14,
global_attn_indexes=[2, 5, 8, 11],
num_pos_feats=128,
mlp_dim=None,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.output_channels = output_channels
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.image_size = image_size
self.patch_size = patch_size
self.hidden_act = hidden_act
self.layer_norm_eps = layer_norm_eps
self.attention_dropout = attention_dropout
self.initializer_range = initializer_range
self.qkv_bias = qkv_bias
self.mlp_ratio = mlp_ratio
self.use_abs_pos = use_abs_pos
self.use_rel_pos = use_rel_pos
self.window_size = window_size
self.global_attn_indexes = global_attn_indexes
self.num_pos_feats = num_pos_feats
self.mlp_dim = int(hidden_size * mlp_ratio) if mlp_dim is None else mlp_dim
class SamConfig(PretrainedConfig):
r"""
[`SamConfig`] is the configuration class to store the configuration of a [`SamModel`]. It is used to instantiate a
SAM model according to the specified arguments, defining the vision model, prompt-encoder model and mask decoder
configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the
SAM-ViT-H [facebook/sam-vit-huge](https://huggingface.co/facebook/sam-vit-huge) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vision_config (Union[`dict`, `SamVisionConfig`], *optional*):
Dictionary of configuration options used to initialize [`SamVisionConfig`].
prompt_encoder_config (Union[`dict`, `SamPromptEncoderConfig`], *optional*):
Dictionary of configuration options used to initialize [`SamPromptEncoderConfig`].
mask_decoder_config (Union[`dict`, `SamMaskDecoderConfig`], *optional*):
Dictionary of configuration options used to initialize [`SamMaskDecoderConfig`].
kwargs (*optional*):
Dictionary of keyword arguments.
Example:
```python
>>> from transformers import (
... SamVisionConfig,
... SamPromptEncoderConfig,
... SamMaskDecoderConfig,
... SamModel,
... )
>>> # Initializing a SamConfig with `"facebook/sam-vit-huge"` style configuration
>>> configuration = SamConfig()
>>> # Initializing a SamModel (with random weights) from the `"facebook/sam-vit-huge"` style configuration
>>> model = SamModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
>>> # We can also initialize a SamConfig from a SamVisionConfig, SamPromptEncoderConfig, and SamMaskDecoderConfig
>>> # Initializing SAM vision, SAM Q-Former and language model configurations
>>> vision_config = SamVisionConfig()
>>> prompt_encoder_config = SamPromptEncoderConfig()
>>> mask_decoder_config = SamMaskDecoderConfig()
>>> config = SamConfig(vision_config, prompt_encoder_config, mask_decoder_config)
```"""
model_type = "sam"
def __init__(
self,
vision_config=None,
prompt_encoder_config=None,
mask_decoder_config=None,
initializer_range=0.02,
**kwargs,
):
super().__init__(**kwargs)
vision_config = vision_config if vision_config is not None else {}
prompt_encoder_config = prompt_encoder_config if prompt_encoder_config is not None else {}
mask_decoder_config = mask_decoder_config if mask_decoder_config is not None else {}
if isinstance(vision_config, SamVisionConfig):
vision_config = vision_config.to_dict()
if isinstance(prompt_encoder_config, SamPromptEncoderConfig):
prompt_encoder_config = prompt_encoder_config.to_dict()
if isinstance(mask_decoder_config, SamMaskDecoderConfig):
mask_decoder_config = mask_decoder_config.to_dict()
self.vision_config = SamVisionConfig(**vision_config)
self.prompt_encoder_config = SamPromptEncoderConfig(**prompt_encoder_config)
self.mask_decoder_config = SamMaskDecoderConfig(**mask_decoder_config)
self.initializer_range = initializer_range