92 lines
4.1 KiB
Python
92 lines
4.1 KiB
Python
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from typing import List
|
|
|
|
from ...configuration_utils import PretrainedConfig
|
|
from ...utils import logging
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
SUPERPOINT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
|
"magic-leap-community/superpoint": "https://huggingface.co/magic-leap-community/superpoint/blob/main/config.json"
|
|
}
|
|
|
|
|
|
class SuperPointConfig(PretrainedConfig):
|
|
r"""
|
|
This is the configuration class to store the configuration of a [`SuperPointForKeypointDetection`]. It is used to instantiate a
|
|
SuperPoint model according to the specified arguments, defining the model architecture. Instantiating a
|
|
configuration with the defaults will yield a similar configuration to that of the SuperPoint
|
|
[magic-leap-community/superpoint](https://huggingface.co/magic-leap-community/superpoint) architecture.
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
|
|
Args:
|
|
encoder_hidden_sizes (`List`, *optional*, defaults to `[64, 64, 128, 128]`):
|
|
The number of channels in each convolutional layer in the encoder.
|
|
decoder_hidden_size (`int`, *optional*, defaults to 256): The hidden size of the decoder.
|
|
keypoint_decoder_dim (`int`, *optional*, defaults to 65): The output dimension of the keypoint decoder.
|
|
descriptor_decoder_dim (`int`, *optional*, defaults to 256): The output dimension of the descriptor decoder.
|
|
keypoint_threshold (`float`, *optional*, defaults to 0.005):
|
|
The threshold to use for extracting keypoints.
|
|
max_keypoints (`int`, *optional*, defaults to -1):
|
|
The maximum number of keypoints to extract. If `-1`, will extract all keypoints.
|
|
nms_radius (`int`, *optional*, defaults to 4):
|
|
The radius for non-maximum suppression.
|
|
border_removal_distance (`int`, *optional*, defaults to 4):
|
|
The distance from the border to remove keypoints.
|
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
|
|
|
Example:
|
|
```python
|
|
>>> from transformers import SuperPointConfig, SuperPointForKeypointDetection
|
|
|
|
>>> # Initializing a SuperPoint superpoint style configuration
|
|
>>> configuration = SuperPointConfig()
|
|
>>> # Initializing a model from the superpoint style configuration
|
|
>>> model = SuperPointForKeypointDetection(configuration)
|
|
>>> # Accessing the model configuration
|
|
>>> configuration = model.config
|
|
```"""
|
|
|
|
model_type = "superpoint"
|
|
|
|
def __init__(
|
|
self,
|
|
encoder_hidden_sizes: List[int] = [64, 64, 128, 128],
|
|
decoder_hidden_size: int = 256,
|
|
keypoint_decoder_dim: int = 65,
|
|
descriptor_decoder_dim: int = 256,
|
|
keypoint_threshold: float = 0.005,
|
|
max_keypoints: int = -1,
|
|
nms_radius: int = 4,
|
|
border_removal_distance: int = 4,
|
|
initializer_range=0.02,
|
|
**kwargs,
|
|
):
|
|
self.encoder_hidden_sizes = encoder_hidden_sizes
|
|
self.decoder_hidden_size = decoder_hidden_size
|
|
self.keypoint_decoder_dim = keypoint_decoder_dim
|
|
self.descriptor_decoder_dim = descriptor_decoder_dim
|
|
self.keypoint_threshold = keypoint_threshold
|
|
self.max_keypoints = max_keypoints
|
|
self.nms_radius = nms_radius
|
|
self.border_removal_distance = border_removal_distance
|
|
self.initializer_range = initializer_range
|
|
|
|
super().__init__(**kwargs)
|