155 lines
6.8 KiB
Python
155 lines
6.8 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 The Intel AIA Team Authors, and HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License=, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing=, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS=,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND=, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Processor class for TVP.
|
|
"""
|
|
|
|
|
|
from ...processing_utils import ProcessorMixin
|
|
from ...tokenization_utils_base import BatchEncoding
|
|
|
|
|
|
class TvpProcessor(ProcessorMixin):
|
|
r"""
|
|
Constructs an TVP processor which wraps a TVP image processor and a Bert tokenizer into a single processor.
|
|
|
|
[`TvpProcessor`] offers all the functionalities of [`TvpImageProcessor`] and [`BertTokenizerFast`]. See the
|
|
[`~TvpProcessor.__call__`] and [`~TvpProcessor.decode`] for more information.
|
|
|
|
Args:
|
|
image_processor ([`TvpImageProcessor`], *optional*):
|
|
The image processor is a required input.
|
|
tokenizer ([`BertTokenizerFast`], *optional*):
|
|
The tokenizer is a required input.
|
|
"""
|
|
|
|
attributes = ["image_processor", "tokenizer"]
|
|
image_processor_class = "TvpImageProcessor"
|
|
tokenizer_class = ("BertTokenizer", "BertTokenizerFast")
|
|
|
|
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
|
|
if image_processor is None:
|
|
raise ValueError("You need to specify an `image_processor`.")
|
|
if tokenizer is None:
|
|
raise ValueError("You need to specify a `tokenizer`.")
|
|
|
|
super().__init__(image_processor, tokenizer)
|
|
|
|
def __call__(self, text=None, videos=None, return_tensors=None, **kwargs):
|
|
"""
|
|
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
|
and `kwargs` arguments to BertTokenizerFast's [`~BertTokenizerFast.__call__`] if `text` is not `None` to encode
|
|
the text. To prepare the image(s), this method forwards the `videos` and `kwargs` arguments to
|
|
TvpImageProcessor's [`~TvpImageProcessor.__call__`] if `videos` is not `None`. Please refer to the doctsring of
|
|
the above two methods for more information.
|
|
|
|
Args:
|
|
text (`str`, `List[str]`, `List[List[str]]`):
|
|
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
|
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
|
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
|
videos (`List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`, `List[List[PIL.Image.Image]]`, `List[List[np.ndarrray]]`,:
|
|
`List[List[torch.Tensor]]`): The video or batch of videos to be prepared. Each video should be a list
|
|
of frames, which can be either PIL images or NumPy arrays. In case of NumPy arrays/PyTorch tensors,
|
|
each frame should be of shape (H, W, C), where H and W are frame height and width, and C is a number of
|
|
channels.
|
|
|
|
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
|
If set, will return tensors of a particular framework. Acceptable values are:
|
|
|
|
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
|
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
|
- `'np'`: Return NumPy `np.ndarray` objects.
|
|
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
|
|
|
Returns:
|
|
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
|
|
|
|
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
|
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
|
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
|
`None`).
|
|
- **pixel_values** -- Pixel values to be fed to a model. Returned when `videos` is not `None`.
|
|
"""
|
|
|
|
max_text_length = kwargs.pop("max_text_length", None)
|
|
|
|
if text is None and videos is None:
|
|
raise ValueError("You have to specify either text or videos. Both cannot be none.")
|
|
|
|
encoding = {}
|
|
if text is not None:
|
|
textual_input = self.tokenizer.batch_encode_plus(
|
|
text,
|
|
truncation=True,
|
|
padding="max_length",
|
|
max_length=max_text_length,
|
|
pad_to_max_length=True,
|
|
return_tensors=return_tensors,
|
|
return_token_type_ids=False,
|
|
**kwargs,
|
|
)
|
|
encoding.update(textual_input)
|
|
|
|
if videos is not None:
|
|
image_features = self.image_processor(videos, return_tensors=return_tensors, **kwargs)
|
|
encoding.update(image_features)
|
|
|
|
return BatchEncoding(data=encoding, tensor_type=return_tensors)
|
|
|
|
def batch_decode(self, *args, **kwargs):
|
|
"""
|
|
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
|
refer to the docstring of this method for more information.
|
|
"""
|
|
return self.tokenizer.batch_decode(*args, **kwargs)
|
|
|
|
def decode(self, *args, **kwargs):
|
|
"""
|
|
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
|
the docstring of this method for more information.
|
|
"""
|
|
return self.tokenizer.decode(*args, **kwargs)
|
|
|
|
def post_process_video_grounding(self, logits, video_durations):
|
|
"""
|
|
Compute the time of the video.
|
|
|
|
Args:
|
|
logits (`torch.Tensor`):
|
|
The logits output of TvpForVideoGrounding.
|
|
video_durations (`float`):
|
|
The video's duration.
|
|
|
|
Returns:
|
|
start (`float`):
|
|
The start time of the video.
|
|
end (`float`):
|
|
The end time of the video.
|
|
"""
|
|
start, end = (
|
|
round(logits.tolist()[0][0] * video_durations, 1),
|
|
round(logits.tolist()[0][1] * video_durations, 1),
|
|
)
|
|
|
|
return start, end
|
|
|
|
@property
|
|
# Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
|
|
def model_input_names(self):
|
|
tokenizer_input_names = self.tokenizer.model_input_names
|
|
image_processor_input_names = self.image_processor.model_input_names
|
|
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|