441 lines
17 KiB
Python
441 lines
17 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" PyTorch UperNet model. Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation."""
|
|
|
|
from typing import List, Optional, Tuple, Union
|
|
|
|
import torch
|
|
from torch import nn
|
|
from torch.nn import CrossEntropyLoss
|
|
|
|
from ...modeling_outputs import SemanticSegmenterOutput
|
|
from ...modeling_utils import PreTrainedModel
|
|
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings
|
|
from ...utils.backbone_utils import load_backbone
|
|
from .configuration_upernet import UperNetConfig
|
|
|
|
|
|
# General docstring
|
|
_CONFIG_FOR_DOC = "UperNetConfig"
|
|
|
|
|
|
class UperNetConvModule(nn.Module):
|
|
"""
|
|
A convolutional block that bundles conv/norm/activation layers. This block simplifies the usage of convolution
|
|
layers, which are commonly used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU).
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
kernel_size: Union[int, Tuple[int, int]],
|
|
padding: Union[int, Tuple[int, int], str] = 0,
|
|
bias: bool = False,
|
|
dilation: Union[int, Tuple[int, int]] = 1,
|
|
) -> None:
|
|
super().__init__()
|
|
self.conv = nn.Conv2d(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
kernel_size=kernel_size,
|
|
padding=padding,
|
|
bias=bias,
|
|
dilation=dilation,
|
|
)
|
|
self.batch_norm = nn.BatchNorm2d(out_channels)
|
|
self.activation = nn.ReLU()
|
|
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
|
output = self.conv(input)
|
|
output = self.batch_norm(output)
|
|
output = self.activation(output)
|
|
|
|
return output
|
|
|
|
|
|
class UperNetPyramidPoolingBlock(nn.Module):
|
|
def __init__(self, pool_scale: int, in_channels: int, channels: int) -> None:
|
|
super().__init__()
|
|
self.layers = [
|
|
nn.AdaptiveAvgPool2d(pool_scale),
|
|
UperNetConvModule(in_channels, channels, kernel_size=1),
|
|
]
|
|
for i, layer in enumerate(self.layers):
|
|
self.add_module(str(i), layer)
|
|
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
|
hidden_state = input
|
|
for layer in self.layers:
|
|
hidden_state = layer(hidden_state)
|
|
return hidden_state
|
|
|
|
|
|
class UperNetPyramidPoolingModule(nn.Module):
|
|
"""
|
|
Pyramid Pooling Module (PPM) used in PSPNet.
|
|
|
|
Args:
|
|
pool_scales (`Tuple[int]`):
|
|
Pooling scales used in Pooling Pyramid Module.
|
|
in_channels (`int`):
|
|
Input channels.
|
|
channels (`int`):
|
|
Channels after modules, before conv_seg.
|
|
align_corners (`bool`):
|
|
align_corners argument of F.interpolate.
|
|
"""
|
|
|
|
def __init__(self, pool_scales: Tuple[int, ...], in_channels: int, channels: int, align_corners: bool) -> None:
|
|
super().__init__()
|
|
self.pool_scales = pool_scales
|
|
self.align_corners = align_corners
|
|
self.in_channels = in_channels
|
|
self.channels = channels
|
|
self.blocks = []
|
|
for i, pool_scale in enumerate(pool_scales):
|
|
block = UperNetPyramidPoolingBlock(pool_scale=pool_scale, in_channels=in_channels, channels=channels)
|
|
self.blocks.append(block)
|
|
self.add_module(str(i), block)
|
|
|
|
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
|
|
ppm_outs = []
|
|
for ppm in self.blocks:
|
|
ppm_out = ppm(x)
|
|
upsampled_ppm_out = nn.functional.interpolate(
|
|
ppm_out, size=x.size()[2:], mode="bilinear", align_corners=self.align_corners
|
|
)
|
|
ppm_outs.append(upsampled_ppm_out)
|
|
return ppm_outs
|
|
|
|
|
|
class UperNetHead(nn.Module):
|
|
"""
|
|
Unified Perceptual Parsing for Scene Understanding. This head is the implementation of
|
|
[UPerNet](https://arxiv.org/abs/1807.10221).
|
|
"""
|
|
|
|
def __init__(self, config, in_channels):
|
|
super().__init__()
|
|
|
|
self.config = config
|
|
self.pool_scales = config.pool_scales # e.g. (1, 2, 3, 6)
|
|
self.in_channels = in_channels
|
|
self.channels = config.hidden_size
|
|
self.align_corners = False
|
|
self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1)
|
|
|
|
# PSP Module
|
|
self.psp_modules = UperNetPyramidPoolingModule(
|
|
self.pool_scales,
|
|
self.in_channels[-1],
|
|
self.channels,
|
|
align_corners=self.align_corners,
|
|
)
|
|
self.bottleneck = UperNetConvModule(
|
|
self.in_channels[-1] + len(self.pool_scales) * self.channels,
|
|
self.channels,
|
|
kernel_size=3,
|
|
padding=1,
|
|
)
|
|
# FPN Module
|
|
self.lateral_convs = nn.ModuleList()
|
|
self.fpn_convs = nn.ModuleList()
|
|
for in_channels in self.in_channels[:-1]: # skip the top layer
|
|
l_conv = UperNetConvModule(in_channels, self.channels, kernel_size=1)
|
|
fpn_conv = UperNetConvModule(self.channels, self.channels, kernel_size=3, padding=1)
|
|
self.lateral_convs.append(l_conv)
|
|
self.fpn_convs.append(fpn_conv)
|
|
|
|
self.fpn_bottleneck = UperNetConvModule(
|
|
len(self.in_channels) * self.channels,
|
|
self.channels,
|
|
kernel_size=3,
|
|
padding=1,
|
|
)
|
|
|
|
def init_weights(self):
|
|
self.apply(self._init_weights)
|
|
|
|
def _init_weights(self, module):
|
|
if isinstance(module, nn.Conv2d):
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
|
if module.bias is not None:
|
|
module.bias.data.zero_()
|
|
|
|
def psp_forward(self, inputs):
|
|
x = inputs[-1]
|
|
psp_outs = [x]
|
|
psp_outs.extend(self.psp_modules(x))
|
|
psp_outs = torch.cat(psp_outs, dim=1)
|
|
output = self.bottleneck(psp_outs)
|
|
|
|
return output
|
|
|
|
def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor:
|
|
# build laterals
|
|
laterals = [lateral_conv(encoder_hidden_states[i]) for i, lateral_conv in enumerate(self.lateral_convs)]
|
|
|
|
laterals.append(self.psp_forward(encoder_hidden_states))
|
|
|
|
# build top-down path
|
|
used_backbone_levels = len(laterals)
|
|
for i in range(used_backbone_levels - 1, 0, -1):
|
|
prev_shape = laterals[i - 1].shape[2:]
|
|
laterals[i - 1] = laterals[i - 1] + nn.functional.interpolate(
|
|
laterals[i], size=prev_shape, mode="bilinear", align_corners=self.align_corners
|
|
)
|
|
|
|
# build outputs
|
|
fpn_outs = [self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels - 1)]
|
|
# append psp feature
|
|
fpn_outs.append(laterals[-1])
|
|
|
|
for i in range(used_backbone_levels - 1, 0, -1):
|
|
fpn_outs[i] = nn.functional.interpolate(
|
|
fpn_outs[i], size=fpn_outs[0].shape[2:], mode="bilinear", align_corners=self.align_corners
|
|
)
|
|
fpn_outs = torch.cat(fpn_outs, dim=1)
|
|
output = self.fpn_bottleneck(fpn_outs)
|
|
output = self.classifier(output)
|
|
|
|
return output
|
|
|
|
|
|
class UperNetFCNHead(nn.Module):
|
|
"""
|
|
Fully Convolution Networks for Semantic Segmentation. This head is the implementation of
|
|
[FCNNet](https://arxiv.org/abs/1411.4038>).
|
|
|
|
Args:
|
|
config:
|
|
Configuration.
|
|
in_channels (int):
|
|
Number of input channels.
|
|
kernel_size (int):
|
|
The kernel size for convs in the head. Default: 3.
|
|
dilation (int):
|
|
The dilation rate for convs in the head. Default: 1.
|
|
"""
|
|
|
|
def __init__(
|
|
self, config, in_index: int = 2, kernel_size: int = 3, dilation: Union[int, Tuple[int, int]] = 1
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.config = config
|
|
self.in_channels = config.auxiliary_in_channels
|
|
self.channels = config.auxiliary_channels
|
|
self.num_convs = config.auxiliary_num_convs
|
|
self.concat_input = config.auxiliary_concat_input
|
|
self.in_index = in_index
|
|
|
|
conv_padding = (kernel_size // 2) * dilation
|
|
convs = []
|
|
convs.append(
|
|
UperNetConvModule(
|
|
self.in_channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation
|
|
)
|
|
)
|
|
for i in range(self.num_convs - 1):
|
|
convs.append(
|
|
UperNetConvModule(
|
|
self.channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation
|
|
)
|
|
)
|
|
if self.num_convs == 0:
|
|
self.convs = nn.Identity()
|
|
else:
|
|
self.convs = nn.Sequential(*convs)
|
|
if self.concat_input:
|
|
self.conv_cat = UperNetConvModule(
|
|
self.in_channels + self.channels, self.channels, kernel_size=kernel_size, padding=kernel_size // 2
|
|
)
|
|
|
|
self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1)
|
|
|
|
def init_weights(self):
|
|
self.apply(self._init_weights)
|
|
|
|
def _init_weights(self, module):
|
|
if isinstance(module, nn.Conv2d):
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
|
if module.bias is not None:
|
|
module.bias.data.zero_()
|
|
|
|
def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor:
|
|
# just take the relevant feature maps
|
|
hidden_states = encoder_hidden_states[self.in_index]
|
|
output = self.convs(hidden_states)
|
|
if self.concat_input:
|
|
output = self.conv_cat(torch.cat([hidden_states, output], dim=1))
|
|
output = self.classifier(output)
|
|
return output
|
|
|
|
|
|
class UperNetPreTrainedModel(PreTrainedModel):
|
|
"""
|
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
|
models.
|
|
"""
|
|
|
|
config_class = UperNetConfig
|
|
main_input_name = "pixel_values"
|
|
|
|
def _init_weights(self, module):
|
|
if isinstance(module, UperNetPreTrainedModel):
|
|
module.backbone.init_weights()
|
|
module.decode_head.init_weights()
|
|
if module.auxiliary_head is not None:
|
|
module.auxiliary_head.init_weights()
|
|
|
|
def init_weights(self):
|
|
"""Initialize the weights"""
|
|
self.backbone.init_weights()
|
|
self.decode_head.init_weights()
|
|
if self.auxiliary_head is not None:
|
|
self.auxiliary_head.init_weights()
|
|
|
|
|
|
UPERNET_START_DOCSTRING = r"""
|
|
Parameters:
|
|
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
|
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
|
behavior.
|
|
config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.
|
|
Initializing with a config file does not load the weights associated with the model, only the
|
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
|
"""
|
|
|
|
UPERNET_INPUTS_DOCSTRING = r"""
|
|
Args:
|
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
|
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
|
[`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See
|
|
`attentions` under returned tensors for more detail.
|
|
output_hidden_states (`bool`, *optional*):
|
|
Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under
|
|
returned tensors for more detail.
|
|
return_dict (`bool`, *optional*):
|
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
|
"""
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.""",
|
|
UPERNET_START_DOCSTRING,
|
|
)
|
|
class UperNetForSemanticSegmentation(UperNetPreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
|
|
self.backbone = load_backbone(config)
|
|
|
|
# Semantic segmentation head(s)
|
|
self.decode_head = UperNetHead(config, in_channels=self.backbone.channels)
|
|
self.auxiliary_head = UperNetFCNHead(config) if config.use_auxiliary_head else None
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
@add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
|
@replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC)
|
|
def forward(
|
|
self,
|
|
pixel_values: Optional[torch.Tensor] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
labels: Optional[torch.Tensor] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[tuple, SemanticSegmenterOutput]:
|
|
r"""
|
|
labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
|
|
Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ...,
|
|
config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy).
|
|
|
|
Returns:
|
|
|
|
Examples:
|
|
```python
|
|
>>> from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
|
|
>>> from PIL import Image
|
|
>>> from huggingface_hub import hf_hub_download
|
|
|
|
>>> image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-tiny")
|
|
>>> model = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-tiny")
|
|
|
|
>>> filepath = hf_hub_download(
|
|
... repo_id="hf-internal-testing/fixtures_ade20k", filename="ADE_val_00000001.jpg", repo_type="dataset"
|
|
... )
|
|
>>> image = Image.open(filepath).convert("RGB")
|
|
|
|
>>> inputs = image_processor(images=image, return_tensors="pt")
|
|
|
|
>>> outputs = model(**inputs)
|
|
|
|
>>> logits = outputs.logits # shape (batch_size, num_labels, height, width)
|
|
>>> list(logits.shape)
|
|
[1, 150, 512, 512]
|
|
```"""
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
|
|
outputs = self.backbone.forward_with_filtered_kwargs(
|
|
pixel_values, output_hidden_states=output_hidden_states, output_attentions=output_attentions
|
|
)
|
|
features = outputs.feature_maps
|
|
|
|
logits = self.decode_head(features)
|
|
logits = nn.functional.interpolate(logits, size=pixel_values.shape[2:], mode="bilinear", align_corners=False)
|
|
|
|
auxiliary_logits = None
|
|
if self.auxiliary_head is not None:
|
|
auxiliary_logits = self.auxiliary_head(features)
|
|
auxiliary_logits = nn.functional.interpolate(
|
|
auxiliary_logits, size=pixel_values.shape[2:], mode="bilinear", align_corners=False
|
|
)
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
if self.config.num_labels == 1:
|
|
raise ValueError("The number of labels should be greater than one")
|
|
else:
|
|
# compute weighted loss
|
|
loss_fct = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index)
|
|
loss = loss_fct(logits, labels)
|
|
if auxiliary_logits is not None:
|
|
auxiliary_loss = loss_fct(auxiliary_logits, labels)
|
|
loss += self.config.auxiliary_loss_weight * auxiliary_loss
|
|
|
|
if not return_dict:
|
|
if output_hidden_states:
|
|
output = (logits,) + outputs[1:]
|
|
else:
|
|
output = (logits,) + outputs[2:]
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
return SemanticSegmenterOutput(
|
|
loss=loss,
|
|
logits=logits,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
)
|