742 lines
32 KiB
Python
742 lines
32 KiB
Python
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import copy
|
|
import dataclasses
|
|
import warnings
|
|
from abc import ABC, abstractmethod
|
|
from collections import OrderedDict
|
|
from typing import TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Mapping, Optional, Tuple, Union
|
|
|
|
import numpy as np
|
|
from packaging import version
|
|
|
|
from ..utils import TensorType, is_torch_available, is_vision_available, logging
|
|
from .utils import ParameterFormat, compute_effective_axis_dimension, compute_serialized_parameters_size
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from ..configuration_utils import PretrainedConfig
|
|
from ..feature_extraction_utils import FeatureExtractionMixin
|
|
from ..image_processing_utils import ImageProcessingMixin
|
|
from ..tokenization_utils_base import PreTrainedTokenizerBase
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
DEFAULT_ONNX_OPSET = 11
|
|
|
|
# 2 Gb
|
|
EXTERNAL_DATA_FORMAT_SIZE_LIMIT = 2 * 1024 * 1024 * 1024
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class PatchingSpec:
|
|
"""
|
|
Data class that holds patching specifications.
|
|
|
|
Args:
|
|
o: Module / object where the op to patch is located
|
|
name: Name of the op to monkey patch
|
|
custom_op: Custom op that patches the original op
|
|
orig_op: Original op that is being patched
|
|
op_wrapper: Wrapper (optional) that wraps both the original and custom ops.
|
|
It is useful for ops that are class or static methods for instance.
|
|
"""
|
|
|
|
o: Any
|
|
name: str
|
|
custom_op: Callable
|
|
orig_op: Optional[Callable] = None
|
|
op_wrapper: Optional[Callable] = None
|
|
|
|
|
|
class OnnxConfig(ABC):
|
|
"""
|
|
Base class for ONNX exportable model describing metadata on how to export the model through the ONNX format.
|
|
"""
|
|
|
|
default_fixed_batch = 2
|
|
default_fixed_sequence = 8
|
|
default_fixed_num_choices = 4
|
|
torch_onnx_minimum_version = version.parse("1.8")
|
|
_tasks_to_common_outputs = {
|
|
"causal-lm": OrderedDict({"logits": {0: "batch", 1: "sequence"}}),
|
|
"default": OrderedDict({"last_hidden_state": {0: "batch", 1: "sequence"}}),
|
|
"image-classification": OrderedDict({"logits": {0: "batch", 1: "sequence"}}),
|
|
"image-segmentation": OrderedDict(
|
|
{
|
|
"logits": {0: "batch", 1: "sequence"},
|
|
"pred_boxes": {0: "batch", 1: "sequence"},
|
|
"pred_masks": {0: "batch", 1: "sequence"},
|
|
}
|
|
),
|
|
"masked-im": OrderedDict({"logits": {0: "batch", 1: "sequence"}}),
|
|
"masked-lm": OrderedDict({"logits": {0: "batch", 1: "sequence"}}),
|
|
"multiple-choice": OrderedDict({"logits": {0: "batch"}}),
|
|
"object-detection": OrderedDict(
|
|
{
|
|
"logits": {0: "batch", 1: "sequence"},
|
|
"pred_boxes": {0: "batch", 1: "sequence"},
|
|
}
|
|
),
|
|
"question-answering": OrderedDict(
|
|
{
|
|
"start_logits": {0: "batch", 1: "sequence"},
|
|
"end_logits": {0: "batch", 1: "sequence"},
|
|
}
|
|
),
|
|
"semantic-segmentation": OrderedDict({"logits": {0: "batch", 1: "num_labels", 2: "height", 3: "width"}}),
|
|
"seq2seq-lm": OrderedDict({"logits": {0: "batch", 1: "decoder_sequence"}}),
|
|
"sequence-classification": OrderedDict({"logits": {0: "batch"}}),
|
|
"token-classification": OrderedDict({"logits": {0: "batch", 1: "sequence"}}),
|
|
"vision2seq-lm": OrderedDict({"logits": {0: "batch", 1: "sequence"}}),
|
|
"speech2seq-lm": OrderedDict({"logits": {0: "batch", 1: "sequence"}}),
|
|
}
|
|
|
|
def __init__(self, config: "PretrainedConfig", task: str = "default", patching_specs: List[PatchingSpec] = None):
|
|
self._config = config
|
|
|
|
if task not in self._tasks_to_common_outputs:
|
|
raise ValueError(
|
|
f"{task} is not a supported task, supported tasks: {self._tasks_to_common_outputs.keys()}"
|
|
)
|
|
self.task = task
|
|
|
|
self._patching_specs = []
|
|
for spec in patching_specs if patching_specs is not None else []:
|
|
final_spec = spec
|
|
if spec.orig_op is None:
|
|
final_spec = dataclasses.replace(spec, orig_op=getattr(spec.o, spec.name))
|
|
self._patching_specs.append(final_spec)
|
|
|
|
@classmethod
|
|
def from_model_config(cls, config: "PretrainedConfig", task: str = "default") -> "OnnxConfig":
|
|
"""
|
|
Instantiate a OnnxConfig for a specific model
|
|
|
|
Args:
|
|
config: The model's configuration to use when exporting to ONNX
|
|
|
|
Returns:
|
|
OnnxConfig for this model
|
|
"""
|
|
return cls(config, task=task)
|
|
|
|
@property
|
|
@abstractmethod
|
|
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
|
"""
|
|
Mapping containing the axis definition of the input tensors to provide to the model
|
|
|
|
Returns:
|
|
For each input: its name associated to the axes symbolic name and the axis position within the tensor
|
|
"""
|
|
raise NotImplementedError()
|
|
|
|
@property
|
|
def outputs(self) -> Mapping[str, Mapping[int, str]]:
|
|
"""
|
|
Mapping containing the axis definition of the output tensors to provide to the model
|
|
|
|
Returns:
|
|
For each output: its name associated to the axes symbolic name and the axis position within the tensor
|
|
"""
|
|
common_outputs = self._tasks_to_common_outputs[self.task]
|
|
return copy.deepcopy(common_outputs)
|
|
|
|
@property
|
|
def values_override(self) -> Optional[Mapping[str, Any]]:
|
|
"""
|
|
Dictionary of keys to override in the model's config before exporting
|
|
|
|
Returns:
|
|
Dictionary with the keys (and their corresponding values) to override
|
|
"""
|
|
if hasattr(self._config, "use_cache"):
|
|
return {"use_cache": False}
|
|
|
|
return None
|
|
|
|
@property
|
|
def default_batch_size(self) -> int:
|
|
"""
|
|
The default batch size to use if no other indication
|
|
|
|
Returns:
|
|
Integer > 0
|
|
"""
|
|
# Using 2 avoid ONNX making assumption about single sample batch
|
|
return OnnxConfig.default_fixed_batch
|
|
|
|
@property
|
|
def default_sequence_length(self) -> int:
|
|
"""
|
|
The default sequence length to use if no other indication
|
|
|
|
Returns:
|
|
Integer > 0
|
|
"""
|
|
return OnnxConfig.default_fixed_sequence
|
|
|
|
@property
|
|
def default_num_choices(self) -> int:
|
|
"""
|
|
The default number of choices to use if no other indication
|
|
|
|
Returns:
|
|
Integer > 0
|
|
"""
|
|
return OnnxConfig.default_fixed_num_choices
|
|
|
|
@property
|
|
def default_onnx_opset(self) -> int:
|
|
"""
|
|
Which onnx opset to use when exporting the model
|
|
|
|
Returns:
|
|
Integer ONNX Opset version
|
|
"""
|
|
return DEFAULT_ONNX_OPSET
|
|
|
|
@property
|
|
def atol_for_validation(self) -> float:
|
|
"""
|
|
What absolute tolerance value to use during model conversion validation.
|
|
|
|
Returns:
|
|
Float absolute tolerance value.
|
|
"""
|
|
return 1e-5
|
|
|
|
@property
|
|
def is_torch_support_available(self) -> bool:
|
|
"""
|
|
The minimum PyTorch version required to export the model.
|
|
|
|
Returns:
|
|
`bool`: Whether the installed version of PyTorch is compatible with the model.
|
|
"""
|
|
if is_torch_available():
|
|
from transformers.utils import get_torch_version
|
|
|
|
return version.parse(get_torch_version()) >= self.torch_onnx_minimum_version
|
|
else:
|
|
return False
|
|
|
|
@staticmethod
|
|
def use_external_data_format(num_parameters: int) -> bool:
|
|
"""
|
|
Flag indicating if the model requires using external data format
|
|
|
|
Args:
|
|
num_parameters: Number of parameter on the model
|
|
|
|
Returns:
|
|
True if model.num_parameters() * size_of(float32) >= 2Gb False otherwise
|
|
"""
|
|
|
|
return (
|
|
compute_serialized_parameters_size(num_parameters, ParameterFormat.Float)
|
|
>= EXTERNAL_DATA_FORMAT_SIZE_LIMIT
|
|
)
|
|
|
|
def _generate_dummy_images(
|
|
self, batch_size: int = 2, num_channels: int = 3, image_height: int = 40, image_width: int = 40
|
|
):
|
|
images = []
|
|
for _ in range(batch_size):
|
|
data = np.random.rand(image_height, image_width, num_channels) * 255
|
|
images.append(Image.fromarray(data.astype("uint8")).convert("RGB"))
|
|
return images
|
|
|
|
def _generate_dummy_audio(
|
|
self, batch_size: int = 2, sampling_rate: int = 22050, time_duration: float = 5.0, frequency: int = 220
|
|
):
|
|
audio_data = []
|
|
for _ in range(batch_size):
|
|
# time variable
|
|
t = np.linspace(0, time_duration, int(time_duration * sampling_rate), endpoint=False)
|
|
|
|
# generate pure sine wave at `frequency` Hz
|
|
audio_data.append(0.5 * np.sin(2 * np.pi * frequency * t))
|
|
|
|
return audio_data
|
|
|
|
def generate_dummy_inputs(
|
|
self,
|
|
preprocessor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin", "ImageProcessingMixin"],
|
|
batch_size: int = -1,
|
|
seq_length: int = -1,
|
|
num_choices: int = -1,
|
|
is_pair: bool = False,
|
|
framework: Optional[TensorType] = None,
|
|
num_channels: int = 3,
|
|
image_width: int = 40,
|
|
image_height: int = 40,
|
|
sampling_rate: int = 22050,
|
|
time_duration: float = 5.0,
|
|
frequency: int = 220,
|
|
tokenizer: "PreTrainedTokenizerBase" = None,
|
|
) -> Mapping[str, Any]:
|
|
"""
|
|
Generate inputs to provide to the ONNX exporter for the specific framework
|
|
|
|
Args:
|
|
preprocessor: ([`PreTrainedTokenizerBase`], [`FeatureExtractionMixin`], or [`ImageProcessingMixin`]):
|
|
The preprocessor associated with this model configuration.
|
|
batch_size (`int`, *optional*, defaults to -1):
|
|
The batch size to export the model for (-1 means dynamic axis).
|
|
num_choices (`int`, *optional*, defaults to -1):
|
|
The number of candidate answers provided for multiple choice task (-1 means dynamic axis).
|
|
seq_length (`int`, *optional*, defaults to -1):
|
|
The sequence length to export the model for (-1 means dynamic axis).
|
|
is_pair (`bool`, *optional*, defaults to `False`):
|
|
Indicate if the input is a pair (sentence 1, sentence 2)
|
|
framework (`TensorType`, *optional*, defaults to `None`):
|
|
The framework (PyTorch or TensorFlow) that the tokenizer will generate tensors for.
|
|
num_channels (`int`, *optional*, defaults to 3):
|
|
The number of channels of the generated images.
|
|
image_width (`int`, *optional*, defaults to 40):
|
|
The width of the generated images.
|
|
image_height (`int`, *optional*, defaults to 40):
|
|
The height of the generated images.
|
|
sampling_rate (`int`, *optional* defaults to 22050)
|
|
The sampling rate for audio data generation.
|
|
time_duration (`float`, *optional* defaults to 5.0)
|
|
Total seconds of sampling for audio data generation.
|
|
frequency (`int`, *optional* defaults to 220)
|
|
The desired natural frequency of generated audio.
|
|
|
|
Returns:
|
|
Mapping[str, Tensor] holding the kwargs to provide to the model's forward function
|
|
"""
|
|
from ..feature_extraction_utils import FeatureExtractionMixin
|
|
from ..image_processing_utils import ImageProcessingMixin
|
|
from ..tokenization_utils_base import PreTrainedTokenizerBase
|
|
|
|
if isinstance(preprocessor, PreTrainedTokenizerBase) and tokenizer is not None:
|
|
raise ValueError("You cannot provide both a tokenizer and a preprocessor to generate dummy inputs.")
|
|
if tokenizer is not None:
|
|
warnings.warn(
|
|
"The `tokenizer` argument is deprecated and will be removed in version 5 of Transformers. Use"
|
|
" `preprocessor` instead.",
|
|
FutureWarning,
|
|
)
|
|
logger.warning("Overwriting the `preprocessor` argument with `tokenizer` to generate dummmy inputs.")
|
|
preprocessor = tokenizer
|
|
if isinstance(preprocessor, PreTrainedTokenizerBase):
|
|
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
|
|
batch_size = compute_effective_axis_dimension(
|
|
batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0
|
|
)
|
|
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
|
|
token_to_add = preprocessor.num_special_tokens_to_add(is_pair)
|
|
seq_length = compute_effective_axis_dimension(
|
|
seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add
|
|
)
|
|
# Generate dummy inputs according to compute batch and sequence
|
|
input_token = (
|
|
preprocessor.unk_token
|
|
if (preprocessor.unk_token is not None and len(preprocessor.unk_token) > 0)
|
|
else "0"
|
|
)
|
|
dummy_input = [" ".join([input_token]) * seq_length] * batch_size
|
|
if self.task == "multiple-choice":
|
|
# If dynamic axis (-1) we forward with a fixed dimension of 4 candidate answers to avoid optimizations
|
|
# made by ONNX
|
|
num_choices = compute_effective_axis_dimension(
|
|
num_choices, fixed_dimension=OnnxConfig.default_fixed_num_choices, num_token_to_add=0
|
|
)
|
|
dummy_input = dummy_input * num_choices
|
|
# The shape of the tokenized inputs values is [batch_size * num_choices, seq_length]
|
|
tokenized_input = preprocessor(dummy_input, text_pair=dummy_input)
|
|
# Unflatten the tokenized inputs values expanding it to the shape [batch_size, num_choices, seq_length]
|
|
for k, v in tokenized_input.items():
|
|
tokenized_input[k] = [v[i : i + num_choices] for i in range(0, len(v), num_choices)]
|
|
return dict(tokenized_input.convert_to_tensors(tensor_type=framework))
|
|
return dict(preprocessor(dummy_input, return_tensors=framework))
|
|
elif isinstance(preprocessor, ImageProcessingMixin):
|
|
if preprocessor.model_input_names[0] != "pixel_values":
|
|
raise ValueError(
|
|
f"The `preprocessor` is an image processor ({preprocessor.__class__.__name__}) and expects"
|
|
f' `model_input_names[0]` to be "pixel_values", but got {preprocessor.model_input_names[0]}'
|
|
)
|
|
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
|
|
batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
|
|
dummy_input = self._generate_dummy_images(batch_size, num_channels, image_height, image_width)
|
|
return dict(preprocessor(images=dummy_input, return_tensors=framework))
|
|
elif isinstance(preprocessor, FeatureExtractionMixin) and preprocessor.model_input_names[0] == "pixel_values":
|
|
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
|
|
batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
|
|
dummy_input = self._generate_dummy_images(batch_size, num_channels, image_height, image_width)
|
|
return dict(preprocessor(images=dummy_input, return_tensors=framework))
|
|
elif (
|
|
isinstance(preprocessor, FeatureExtractionMixin) and preprocessor.model_input_names[0] == "input_features"
|
|
):
|
|
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
|
|
batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
|
|
dummy_input = self._generate_dummy_audio(batch_size, sampling_rate, time_duration, frequency)
|
|
return dict(preprocessor(dummy_input, return_tensors=framework))
|
|
else:
|
|
raise ValueError(
|
|
"Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor."
|
|
)
|
|
|
|
def generate_dummy_inputs_onnxruntime(self, reference_model_inputs: Mapping[str, Any]) -> Mapping[str, Any]:
|
|
"""
|
|
Generate inputs for ONNX Runtime using the reference model inputs. Override this to run inference with seq2seq
|
|
models which have the encoder and decoder exported as separate ONNX files.
|
|
|
|
Args:
|
|
reference_model_inputs ([`Mapping[str, Tensor]`):
|
|
Reference inputs for the model.
|
|
|
|
Returns:
|
|
`Mapping[str, Tensor]`: The mapping holding the kwargs to provide to the model's forward function
|
|
"""
|
|
return reference_model_inputs
|
|
|
|
def patch_ops(self):
|
|
for spec in self._patching_specs:
|
|
custom_op = spec.custom_op if spec.op_wrapper is None else spec.op_wrapper(spec.custom_op)
|
|
setattr(spec.o, spec.name, custom_op)
|
|
|
|
def restore_ops(self):
|
|
for spec in self._patching_specs:
|
|
orig_op = spec.orig_op if spec.op_wrapper is None else spec.op_wrapper(spec.orig_op)
|
|
setattr(spec.o, spec.name, orig_op)
|
|
|
|
@classmethod
|
|
def flatten_output_collection_property(cls, name: str, field: Iterable[Any]) -> Dict[str, Any]:
|
|
"""
|
|
Flatten any potential nested structure expanding the name of the field with the index of the element within the
|
|
structure.
|
|
|
|
Args:
|
|
name: The name of the nested structure
|
|
field: The structure to, potentially, be flattened
|
|
|
|
Returns:
|
|
(Dict[str, Any]): Outputs with flattened structure and key mapping this new structure.
|
|
|
|
"""
|
|
from itertools import chain
|
|
|
|
return {f"{name}.{idx}": item for idx, item in enumerate(chain.from_iterable(field))}
|
|
|
|
|
|
class OnnxConfigWithPast(OnnxConfig, ABC):
|
|
def __init__(
|
|
self,
|
|
config: "PretrainedConfig",
|
|
task: str = "default",
|
|
patching_specs: List[PatchingSpec] = None,
|
|
use_past: bool = False,
|
|
):
|
|
super().__init__(config, task=task, patching_specs=patching_specs)
|
|
self.use_past = use_past
|
|
|
|
@classmethod
|
|
def with_past(cls, config: "PretrainedConfig", task: str = "default") -> "OnnxConfigWithPast":
|
|
"""
|
|
Instantiate a OnnxConfig with `use_past` attribute set to True
|
|
|
|
Args:
|
|
config: The underlying model's config to use when exporting to ONNX
|
|
|
|
Returns:
|
|
OnnxConfig with `.use_past = True`
|
|
"""
|
|
return cls(config, task=task, use_past=True)
|
|
|
|
@property
|
|
def outputs(self) -> Mapping[str, Mapping[int, str]]:
|
|
common_outputs = super().outputs
|
|
if self.use_past:
|
|
self.fill_with_past_key_values_(common_outputs, direction="outputs")
|
|
|
|
return common_outputs
|
|
|
|
@property
|
|
def values_override(self) -> Optional[Mapping[str, Any]]:
|
|
if hasattr(self._config, "use_cache"):
|
|
return {"use_cache": self.use_past}
|
|
|
|
return None
|
|
|
|
@property
|
|
def num_layers(self) -> int:
|
|
"""
|
|
The number of layers attribute retrieved from the model config. Override this for model configs where the
|
|
number of layers attribute is not called `num_layers`.
|
|
"""
|
|
if not hasattr(self._config, "num_layers"):
|
|
raise AttributeError(
|
|
"could not find the number of layers attribute in the model configuration, override the num_layers"
|
|
" property of the model OnnxConfig to solve this"
|
|
)
|
|
return self._config.num_layers
|
|
|
|
@property
|
|
def num_attention_heads(self) -> int:
|
|
"""
|
|
The number of attention heads attribute retrieved from the model config. Override this for model configs where
|
|
the number of attention heads attribute is not called `num_attention_heads`.
|
|
"""
|
|
if not hasattr(self._config, "num_attention_heads"):
|
|
raise AttributeError(
|
|
"could not find the number of attention heads attribute in the model configuration, override the"
|
|
" num_attention_heads property of the model OnnxConfig to solve this"
|
|
)
|
|
return self._config.num_attention_heads
|
|
|
|
def generate_dummy_inputs(
|
|
self,
|
|
tokenizer: "PreTrainedTokenizerBase",
|
|
batch_size: int = -1,
|
|
seq_length: int = -1,
|
|
is_pair: bool = False,
|
|
framework: Optional[TensorType] = None,
|
|
) -> Mapping[str, Any]:
|
|
# TODO: should we set seq_length = 1 when self.use_past = True?
|
|
common_inputs = super().generate_dummy_inputs(
|
|
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
|
|
)
|
|
|
|
if self.use_past:
|
|
if not is_torch_available():
|
|
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
|
|
else:
|
|
import torch
|
|
|
|
batch, seqlen = common_inputs["input_ids"].shape
|
|
# Not using the same length for past_key_values
|
|
past_key_values_length = seqlen + 2
|
|
shape = (
|
|
batch,
|
|
self.num_attention_heads,
|
|
past_key_values_length,
|
|
self._config.hidden_size // self.num_attention_heads,
|
|
)
|
|
|
|
if "attention_mask" in common_inputs:
|
|
mask_dtype = common_inputs["attention_mask"].dtype
|
|
common_inputs["attention_mask"] = torch.cat(
|
|
[common_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)],
|
|
dim=1,
|
|
)
|
|
|
|
common_inputs["past_key_values"] = []
|
|
for _ in range(self.num_layers):
|
|
common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape)))
|
|
|
|
return common_inputs
|
|
|
|
def fill_with_past_key_values_(
|
|
self, inputs_or_outputs: Mapping[str, Mapping[int, str]], direction: str, inverted_values_shape: bool = False
|
|
):
|
|
"""
|
|
Fill the input_or_outputs mapping with past_key_values dynamic axes considering.
|
|
|
|
Args:
|
|
inputs_or_outputs: The mapping to fill.
|
|
direction: either "inputs" or "outputs", it specifies whether input_or_outputs is the input mapping or the
|
|
output mapping, this is important for axes naming.
|
|
inverted_values_shape:
|
|
If `True`, store values on dynamic axis 1, else on axis 2.
|
|
|
|
"""
|
|
if direction not in ["inputs", "outputs"]:
|
|
raise ValueError(f'direction must either be "inputs" or "outputs", but {direction} was given')
|
|
|
|
name = "past_key_values" if direction == "inputs" else "present"
|
|
for i in range(self.num_layers):
|
|
inputs_or_outputs[f"{name}.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
|
|
if inverted_values_shape:
|
|
inputs_or_outputs[f"{name}.{i}.value"] = {0: "batch", 1: "past_sequence + sequence"}
|
|
else:
|
|
inputs_or_outputs[f"{name}.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
|
|
|
|
def _flatten_past_key_values_(self, flattened_output, name, idx, t):
|
|
flattened_output[f"{name}.{idx}.key"] = t[0]
|
|
flattened_output[f"{name}.{idx}.value"] = t[1]
|
|
|
|
def flatten_output_collection_property(self, name: str, field: Iterable[Any]) -> Dict[str, Any]:
|
|
flattened_output = {}
|
|
if name in ["present", "past_key_values"]:
|
|
for idx, t in enumerate(field):
|
|
self._flatten_past_key_values_(flattened_output, name, idx, t)
|
|
else:
|
|
flattened_output = super().flatten_output_collection_property(name, field)
|
|
|
|
return flattened_output
|
|
|
|
|
|
class OnnxSeq2SeqConfigWithPast(OnnxConfigWithPast):
|
|
@property
|
|
def outputs(self) -> Mapping[str, Mapping[int, str]]:
|
|
common_outputs = super(OnnxConfigWithPast, self).outputs
|
|
# Renaming the outputs axes properly.
|
|
for name, axes_names in common_outputs.items():
|
|
sequence_name = "encoder_sequence" if "encoder" in name else "decoder_sequence"
|
|
for axis_idx, name in axes_names.items():
|
|
if "sequence" in name:
|
|
axes_names[axis_idx] = sequence_name
|
|
# We reset the value as the order in common_outputs (OrderedDict) is lost otherwise
|
|
else:
|
|
axes_names[axis_idx] = name
|
|
if self.use_past:
|
|
self.fill_with_past_key_values_(common_outputs, direction="outputs")
|
|
|
|
return common_outputs
|
|
|
|
@property
|
|
def num_layers(self) -> Tuple[int]:
|
|
try:
|
|
num_layers = super().num_layers
|
|
num_layers = (num_layers, num_layers)
|
|
except AttributeError:
|
|
if hasattr(self._config, "encoder_layers") and hasattr(self._config, "decoder_layers"):
|
|
num_layers = (self._config.encoder_layers, self._config.decoder_layers)
|
|
else:
|
|
raise AttributeError(
|
|
"could not find the number of encoder and decoder layers attributes in the model configuration,"
|
|
" override the num_layers property of the model OnnxConfig to solve this"
|
|
)
|
|
|
|
return num_layers
|
|
|
|
@property
|
|
def num_attention_heads(self) -> Tuple[int]:
|
|
try:
|
|
num_attention_heads = super().num_attention_heads
|
|
num_attention_heads = (num_attention_heads, num_attention_heads)
|
|
except AttributeError:
|
|
if hasattr(self._config, "encoder_attention_heads") and hasattr(self._config, "decoder_attention_heads"):
|
|
num_attention_heads = (self._config.encoder_attention_heads, self._config.decoder_attention_heads)
|
|
else:
|
|
raise AttributeError(
|
|
"could not find the number of attention heads for the encoder and the decoder attributes in the"
|
|
" model configuration, override the num_attention_heads property of the model OnnxConfig to solve"
|
|
" this"
|
|
)
|
|
return num_attention_heads
|
|
|
|
def generate_dummy_inputs(
|
|
self,
|
|
tokenizer: "PreTrainedTokenizerBase",
|
|
batch_size: int = -1,
|
|
seq_length: int = -1,
|
|
is_pair: bool = False,
|
|
framework: Optional[TensorType] = None,
|
|
) -> Mapping[str, Any]:
|
|
encoder_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs(
|
|
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
|
|
)
|
|
|
|
# Generate decoder inputs
|
|
decoder_seq_length = seq_length if not self.use_past else 1
|
|
decoder_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs(
|
|
tokenizer, batch_size=batch_size, seq_length=decoder_seq_length, is_pair=is_pair, framework=framework
|
|
)
|
|
decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
|
|
common_inputs = dict(**encoder_inputs, **decoder_inputs)
|
|
|
|
if self.use_past:
|
|
if not is_torch_available():
|
|
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
|
|
else:
|
|
import torch
|
|
batch = common_inputs["input_ids"].shape[0]
|
|
encoder_seq_length = common_inputs["input_ids"].shape[1]
|
|
decoder_seq_length = common_inputs["decoder_input_ids"].shape[1]
|
|
num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads
|
|
encoder_shape = (
|
|
batch,
|
|
num_encoder_attention_heads,
|
|
encoder_seq_length,
|
|
self._config.hidden_size // num_encoder_attention_heads,
|
|
)
|
|
decoder_shape = (
|
|
batch,
|
|
num_decoder_attention_heads,
|
|
# Not using the same length for past_key_values
|
|
decoder_seq_length + 3,
|
|
self._config.hidden_size // num_decoder_attention_heads,
|
|
)
|
|
|
|
common_inputs["past_key_values"] = []
|
|
# If the number of encoder and decoder layers are present in the model configuration, both are considered
|
|
num_encoder_layers, num_decoder_layers = self.num_layers
|
|
min_num_layers = min(num_encoder_layers, num_decoder_layers)
|
|
max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers
|
|
remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
|
|
|
|
for _ in range(min_num_layers):
|
|
# For encoder-decoder models, past_key_values contains pre-computed values for both the encoder and the
|
|
# decoder layers, hence a tuple of 4 tensors instead of 2
|
|
common_inputs["past_key_values"].append(
|
|
(
|
|
torch.zeros(decoder_shape),
|
|
torch.zeros(decoder_shape),
|
|
torch.zeros(encoder_shape),
|
|
torch.zeros(encoder_shape),
|
|
)
|
|
)
|
|
|
|
# TODO: test this.
|
|
shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape
|
|
for _ in range(min_num_layers, max_num_layers):
|
|
common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape)))
|
|
|
|
return common_inputs
|
|
|
|
def fill_with_past_key_values_(self, inputs_or_outputs: Mapping[str, Mapping[int, str]], direction: str):
|
|
if direction not in ["inputs", "outputs"]:
|
|
raise ValueError(f'direction must either be "inputs" or "outputs", but {direction} was given')
|
|
|
|
name = "past_key_values" if direction == "inputs" else "present"
|
|
|
|
# If the number of encoder and decoder layers are present in the model configuration, both are considered
|
|
num_encoder_layers, num_decoder_layers = self.num_layers
|
|
min_num_layers = min(num_encoder_layers, num_decoder_layers)
|
|
max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers
|
|
remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
|
|
|
|
encoder_sequence = "past_encoder_sequence"
|
|
decoder_sequence = "past_decoder_sequence" if direction == "inputs" else "past_decoder_sequence + sequence"
|
|
|
|
for i in range(min_num_layers):
|
|
inputs_or_outputs[f"{name}.{i}.decoder.key"] = {0: "batch", 2: decoder_sequence}
|
|
inputs_or_outputs[f"{name}.{i}.decoder.value"] = {0: "batch", 2: decoder_sequence}
|
|
inputs_or_outputs[f"{name}.{i}.encoder.key"] = {0: "batch", 2: encoder_sequence}
|
|
inputs_or_outputs[f"{name}.{i}.encoder.value"] = {0: "batch", 2: encoder_sequence}
|
|
|
|
for i in range(min_num_layers, max_num_layers):
|
|
if remaining_side_name == "encoder":
|
|
axes_info = {0: "batch", 2: encoder_sequence}
|
|
else:
|
|
axes_info = {0: "batch", 2: decoder_sequence}
|
|
inputs_or_outputs[f"{name}.{i}.{remaining_side_name}.key"] = axes_info
|
|
|
|
def _flatten_past_key_values_(self, flattened_output, name, idx, t):
|
|
flattened_output[f"{name}.{idx}.decoder.key"] = t[0]
|
|
flattened_output[f"{name}.{idx}.decoder.value"] = t[1]
|
|
flattened_output[f"{name}.{idx}.encoder.key"] = t[2]
|
|
flattened_output[f"{name}.{idx}.encoder.value"] = t[3]
|