766 lines
30 KiB
Python
766 lines
30 KiB
Python
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
|
|
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import base64
|
|
import importlib
|
|
import inspect
|
|
import io
|
|
import json
|
|
import os
|
|
import tempfile
|
|
from typing import Any, Dict, List, Optional, Union
|
|
|
|
from huggingface_hub import create_repo, hf_hub_download, metadata_update, upload_folder
|
|
from huggingface_hub.utils import RepositoryNotFoundError, build_hf_headers, get_session
|
|
|
|
from ..dynamic_module_utils import custom_object_save, get_class_from_dynamic_module, get_imports
|
|
from ..image_utils import is_pil_image
|
|
from ..models.auto import AutoProcessor
|
|
from ..utils import (
|
|
CONFIG_NAME,
|
|
cached_file,
|
|
is_accelerate_available,
|
|
is_torch_available,
|
|
is_vision_available,
|
|
logging,
|
|
)
|
|
from .agent_types import handle_agent_inputs, handle_agent_outputs
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
if is_accelerate_available():
|
|
from accelerate import PartialState
|
|
from accelerate.utils import send_to_device
|
|
|
|
|
|
TOOL_CONFIG_FILE = "tool_config.json"
|
|
|
|
|
|
def get_repo_type(repo_id, repo_type=None, **hub_kwargs):
|
|
if repo_type is not None:
|
|
return repo_type
|
|
try:
|
|
hf_hub_download(repo_id, TOOL_CONFIG_FILE, repo_type="space", **hub_kwargs)
|
|
return "space"
|
|
except RepositoryNotFoundError:
|
|
try:
|
|
hf_hub_download(repo_id, TOOL_CONFIG_FILE, repo_type="model", **hub_kwargs)
|
|
return "model"
|
|
except RepositoryNotFoundError:
|
|
raise EnvironmentError(f"`{repo_id}` does not seem to be a valid repo identifier on the Hub.")
|
|
except Exception:
|
|
return "model"
|
|
except Exception:
|
|
return "space"
|
|
|
|
|
|
# docstyle-ignore
|
|
APP_FILE_TEMPLATE = """from transformers import launch_gradio_demo
|
|
from {module_name} import {class_name}
|
|
|
|
launch_gradio_demo({class_name})
|
|
"""
|
|
|
|
|
|
class Tool:
|
|
"""
|
|
A base class for the functions used by the agent. Subclass this and implement the `__call__` method as well as the
|
|
following class attributes:
|
|
|
|
- **description** (`str`) -- A short description of what your tool does, the inputs it expects and the output(s) it
|
|
will return. For instance 'This is a tool that downloads a file from a `url`. It takes the `url` as input, and
|
|
returns the text contained in the file'.
|
|
- **name** (`str`) -- A performative name that will be used for your tool in the prompt to the agent. For instance
|
|
`"text-classifier"` or `"image_generator"`.
|
|
- **inputs** (`List[str]`) -- The list of modalities expected for the inputs (in the same order as in the call).
|
|
Modalitiies should be `"text"`, `"image"` or `"audio"`. This is only used by `launch_gradio_demo` or to make a
|
|
nice space from your tool.
|
|
- **outputs** (`List[str]`) -- The list of modalities returned but the tool (in the same order as the return of the
|
|
call method). Modalitiies should be `"text"`, `"image"` or `"audio"`. This is only used by `launch_gradio_demo`
|
|
or to make a nice space from your tool.
|
|
|
|
You can also override the method [`~Tool.setup`] if your tool as an expensive operation to perform before being
|
|
usable (such as loading a model). [`~Tool.setup`] will be called the first time you use your tool, but not at
|
|
instantiation.
|
|
"""
|
|
|
|
description: str = "This is a tool that ..."
|
|
name: str = ""
|
|
|
|
inputs: List[str]
|
|
outputs: List[str]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
self.is_initialized = False
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
return NotImplemented("Write this method in your subclass of `Tool`.")
|
|
|
|
def setup(self):
|
|
"""
|
|
Overwrite this method here for any operation that is expensive and needs to be executed before you start using
|
|
your tool. Such as loading a big model.
|
|
"""
|
|
self.is_initialized = True
|
|
|
|
def save(self, output_dir):
|
|
"""
|
|
Saves the relevant code files for your tool so it can be pushed to the Hub. This will copy the code of your
|
|
tool in `output_dir` as well as autogenerate:
|
|
|
|
- a config file named `tool_config.json`
|
|
- an `app.py` file so that your tool can be converted to a space
|
|
- a `requirements.txt` containing the names of the module used by your tool (as detected when inspecting its
|
|
code)
|
|
|
|
You should only use this method to save tools that are defined in a separate module (not `__main__`).
|
|
|
|
Args:
|
|
output_dir (`str`): The folder in which you want to save your tool.
|
|
"""
|
|
os.makedirs(output_dir, exist_ok=True)
|
|
# Save module file
|
|
if self.__module__ == "__main__":
|
|
raise ValueError(
|
|
f"We can't save the code defining {self} in {output_dir} as it's been defined in __main__. You "
|
|
"have to put this code in a separate module so we can include it in the saved folder."
|
|
)
|
|
module_files = custom_object_save(self, output_dir)
|
|
|
|
module_name = self.__class__.__module__
|
|
last_module = module_name.split(".")[-1]
|
|
full_name = f"{last_module}.{self.__class__.__name__}"
|
|
|
|
# Save config file
|
|
config_file = os.path.join(output_dir, "tool_config.json")
|
|
if os.path.isfile(config_file):
|
|
with open(config_file, "r", encoding="utf-8") as f:
|
|
tool_config = json.load(f)
|
|
else:
|
|
tool_config = {}
|
|
|
|
tool_config = {"tool_class": full_name, "description": self.description, "name": self.name}
|
|
with open(config_file, "w", encoding="utf-8") as f:
|
|
f.write(json.dumps(tool_config, indent=2, sort_keys=True) + "\n")
|
|
|
|
# Save app file
|
|
app_file = os.path.join(output_dir, "app.py")
|
|
with open(app_file, "w", encoding="utf-8") as f:
|
|
f.write(APP_FILE_TEMPLATE.format(module_name=last_module, class_name=self.__class__.__name__))
|
|
|
|
# Save requirements file
|
|
requirements_file = os.path.join(output_dir, "requirements.txt")
|
|
imports = []
|
|
for module in module_files:
|
|
imports.extend(get_imports(module))
|
|
imports = list(set(imports))
|
|
with open(requirements_file, "w", encoding="utf-8") as f:
|
|
f.write("\n".join(imports) + "\n")
|
|
|
|
@classmethod
|
|
def from_hub(
|
|
cls,
|
|
repo_id: str,
|
|
model_repo_id: Optional[str] = None,
|
|
token: Optional[str] = None,
|
|
remote: bool = False,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Loads a tool defined on the Hub.
|
|
|
|
<Tip warning={true}>
|
|
|
|
Loading a tool from the Hub means that you'll download the tool and execute it locally.
|
|
ALWAYS inspect the tool you're downloading before loading it within your runtime, as you would do when
|
|
installing a package using pip/npm/apt.
|
|
|
|
</Tip>
|
|
|
|
Args:
|
|
repo_id (`str`):
|
|
The name of the repo on the Hub where your tool is defined.
|
|
model_repo_id (`str`, *optional*):
|
|
If your tool uses a model and you want to use a different model than the default, you can pass a second
|
|
repo ID or an endpoint url to this argument.
|
|
token (`str`, *optional*):
|
|
The token to identify you on hf.co. If unset, will use the token generated when running
|
|
`huggingface-cli login` (stored in `~/.huggingface`).
|
|
remote (`bool`, *optional*, defaults to `False`):
|
|
Whether to use your tool by downloading the model or (if it is available) with an inference endpoint.
|
|
kwargs (additional keyword arguments, *optional*):
|
|
Additional keyword arguments that will be split in two: all arguments relevant to the Hub (such as
|
|
`cache_dir`, `revision`, `subfolder`) will be used when downloading the files for your tool, and the
|
|
others will be passed along to its init.
|
|
"""
|
|
if remote and model_repo_id is None:
|
|
endpoints = get_default_endpoints()
|
|
if repo_id not in endpoints:
|
|
raise ValueError(
|
|
f"Could not infer a default endpoint for {repo_id}, you need to pass one using the "
|
|
"`model_repo_id` argument."
|
|
)
|
|
model_repo_id = endpoints[repo_id]
|
|
hub_kwargs_names = [
|
|
"cache_dir",
|
|
"force_download",
|
|
"resume_download",
|
|
"proxies",
|
|
"revision",
|
|
"repo_type",
|
|
"subfolder",
|
|
"local_files_only",
|
|
]
|
|
hub_kwargs = {k: v for k, v in kwargs.items() if k in hub_kwargs_names}
|
|
|
|
# Try to get the tool config first.
|
|
hub_kwargs["repo_type"] = get_repo_type(repo_id, **hub_kwargs)
|
|
resolved_config_file = cached_file(
|
|
repo_id,
|
|
TOOL_CONFIG_FILE,
|
|
token=token,
|
|
**hub_kwargs,
|
|
_raise_exceptions_for_gated_repo=False,
|
|
_raise_exceptions_for_missing_entries=False,
|
|
_raise_exceptions_for_connection_errors=False,
|
|
)
|
|
is_tool_config = resolved_config_file is not None
|
|
if resolved_config_file is None:
|
|
resolved_config_file = cached_file(
|
|
repo_id,
|
|
CONFIG_NAME,
|
|
token=token,
|
|
**hub_kwargs,
|
|
_raise_exceptions_for_gated_repo=False,
|
|
_raise_exceptions_for_missing_entries=False,
|
|
_raise_exceptions_for_connection_errors=False,
|
|
)
|
|
if resolved_config_file is None:
|
|
raise EnvironmentError(
|
|
f"{repo_id} does not appear to provide a valid configuration in `tool_config.json` or `config.json`."
|
|
)
|
|
|
|
with open(resolved_config_file, encoding="utf-8") as reader:
|
|
config = json.load(reader)
|
|
|
|
if not is_tool_config:
|
|
if "custom_tool" not in config:
|
|
raise EnvironmentError(
|
|
f"{repo_id} does not provide a mapping to custom tools in its configuration `config.json`."
|
|
)
|
|
custom_tool = config["custom_tool"]
|
|
else:
|
|
custom_tool = config
|
|
|
|
tool_class = custom_tool["tool_class"]
|
|
tool_class = get_class_from_dynamic_module(tool_class, repo_id, token=token, **hub_kwargs)
|
|
|
|
if len(tool_class.name) == 0:
|
|
tool_class.name = custom_tool["name"]
|
|
if tool_class.name != custom_tool["name"]:
|
|
logger.warning(
|
|
f"{tool_class.__name__} implements a different name in its configuration and class. Using the tool "
|
|
"configuration name."
|
|
)
|
|
tool_class.name = custom_tool["name"]
|
|
|
|
if len(tool_class.description) == 0:
|
|
tool_class.description = custom_tool["description"]
|
|
if tool_class.description != custom_tool["description"]:
|
|
logger.warning(
|
|
f"{tool_class.__name__} implements a different description in its configuration and class. Using the "
|
|
"tool configuration description."
|
|
)
|
|
tool_class.description = custom_tool["description"]
|
|
|
|
if remote:
|
|
return RemoteTool(model_repo_id, token=token, tool_class=tool_class)
|
|
return tool_class(model_repo_id, token=token, **kwargs)
|
|
|
|
def push_to_hub(
|
|
self,
|
|
repo_id: str,
|
|
commit_message: str = "Upload tool",
|
|
private: Optional[bool] = None,
|
|
token: Optional[Union[bool, str]] = None,
|
|
create_pr: bool = False,
|
|
) -> str:
|
|
"""
|
|
Upload the tool to the Hub.
|
|
|
|
Parameters:
|
|
repo_id (`str`):
|
|
The name of the repository you want to push your tool to. It should contain your organization name when
|
|
pushing to a given organization.
|
|
commit_message (`str`, *optional*, defaults to `"Upload tool"`):
|
|
Message to commit while pushing.
|
|
private (`bool`, *optional*):
|
|
Whether or not the repository created should be private.
|
|
token (`bool` or `str`, *optional*):
|
|
The token to use as HTTP bearer authorization for remote files. If unset, will use the token generated
|
|
when running `huggingface-cli login` (stored in `~/.huggingface`).
|
|
create_pr (`bool`, *optional*, defaults to `False`):
|
|
Whether or not to create a PR with the uploaded files or directly commit.
|
|
"""
|
|
repo_url = create_repo(
|
|
repo_id=repo_id, token=token, private=private, exist_ok=True, repo_type="space", space_sdk="gradio"
|
|
)
|
|
repo_id = repo_url.repo_id
|
|
metadata_update(repo_id, {"tags": ["tool"]}, repo_type="space")
|
|
|
|
with tempfile.TemporaryDirectory() as work_dir:
|
|
# Save all files.
|
|
self.save(work_dir)
|
|
logger.info(f"Uploading the following files to {repo_id}: {','.join(os.listdir(work_dir))}")
|
|
return upload_folder(
|
|
repo_id=repo_id,
|
|
commit_message=commit_message,
|
|
folder_path=work_dir,
|
|
token=token,
|
|
create_pr=create_pr,
|
|
repo_type="space",
|
|
)
|
|
|
|
@staticmethod
|
|
def from_gradio(gradio_tool):
|
|
"""
|
|
Creates a [`Tool`] from a gradio tool.
|
|
"""
|
|
|
|
class GradioToolWrapper(Tool):
|
|
def __init__(self, _gradio_tool):
|
|
super().__init__()
|
|
self.name = _gradio_tool.name
|
|
self.description = _gradio_tool.description
|
|
|
|
GradioToolWrapper.__call__ = gradio_tool.run
|
|
return GradioToolWrapper(gradio_tool)
|
|
|
|
|
|
class RemoteTool(Tool):
|
|
"""
|
|
A [`Tool`] that will make requests to an inference endpoint.
|
|
|
|
Args:
|
|
endpoint_url (`str`, *optional*):
|
|
The url of the endpoint to use.
|
|
token (`str`, *optional*):
|
|
The token to use as HTTP bearer authorization for remote files. If unset, will use the token generated when
|
|
running `huggingface-cli login` (stored in `~/.huggingface`).
|
|
tool_class (`type`, *optional*):
|
|
The corresponding `tool_class` if this is a remote version of an existing tool. Will help determine when
|
|
the output should be converted to another type (like images).
|
|
"""
|
|
|
|
def __init__(self, endpoint_url=None, token=None, tool_class=None):
|
|
self.endpoint_url = endpoint_url
|
|
self.client = EndpointClient(endpoint_url, token=token)
|
|
self.tool_class = tool_class
|
|
|
|
def prepare_inputs(self, *args, **kwargs):
|
|
"""
|
|
Prepare the inputs received for the HTTP client sending data to the endpoint. Positional arguments will be
|
|
matched with the signature of the `tool_class` if it was provided at instantation. Images will be encoded into
|
|
bytes.
|
|
|
|
You can override this method in your custom class of [`RemoteTool`].
|
|
"""
|
|
inputs = kwargs.copy()
|
|
if len(args) > 0:
|
|
if self.tool_class is not None:
|
|
# Match args with the signature
|
|
if issubclass(self.tool_class, PipelineTool):
|
|
call_method = self.tool_class.encode
|
|
else:
|
|
call_method = self.tool_class.__call__
|
|
signature = inspect.signature(call_method).parameters
|
|
parameters = [
|
|
k
|
|
for k, p in signature.items()
|
|
if p.kind not in [inspect._ParameterKind.VAR_POSITIONAL, inspect._ParameterKind.VAR_KEYWORD]
|
|
]
|
|
if parameters[0] == "self":
|
|
parameters = parameters[1:]
|
|
if len(args) > len(parameters):
|
|
raise ValueError(
|
|
f"{self.tool_class} only accepts {len(parameters)} arguments but {len(args)} were given."
|
|
)
|
|
for arg, name in zip(args, parameters):
|
|
inputs[name] = arg
|
|
elif len(args) > 1:
|
|
raise ValueError("A `RemoteTool` can only accept one positional input.")
|
|
elif len(args) == 1:
|
|
if is_pil_image(args[0]):
|
|
return {"inputs": self.client.encode_image(args[0])}
|
|
return {"inputs": args[0]}
|
|
|
|
for key, value in inputs.items():
|
|
if is_pil_image(value):
|
|
inputs[key] = self.client.encode_image(value)
|
|
|
|
return {"inputs": inputs}
|
|
|
|
def extract_outputs(self, outputs):
|
|
"""
|
|
You can override this method in your custom class of [`RemoteTool`] to apply some custom post-processing of the
|
|
outputs of the endpoint.
|
|
"""
|
|
return outputs
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
args, kwargs = handle_agent_inputs(*args, **kwargs)
|
|
|
|
output_image = self.tool_class is not None and self.tool_class.outputs == ["image"]
|
|
inputs = self.prepare_inputs(*args, **kwargs)
|
|
if isinstance(inputs, dict):
|
|
outputs = self.client(**inputs, output_image=output_image)
|
|
else:
|
|
outputs = self.client(inputs, output_image=output_image)
|
|
if isinstance(outputs, list) and len(outputs) == 1 and isinstance(outputs[0], list):
|
|
outputs = outputs[0]
|
|
|
|
outputs = handle_agent_outputs(outputs, self.tool_class.outputs if self.tool_class is not None else None)
|
|
|
|
return self.extract_outputs(outputs)
|
|
|
|
|
|
class PipelineTool(Tool):
|
|
"""
|
|
A [`Tool`] tailored towards Transformer models. On top of the class attributes of the base class [`Tool`], you will
|
|
need to specify:
|
|
|
|
- **model_class** (`type`) -- The class to use to load the model in this tool.
|
|
- **default_checkpoint** (`str`) -- The default checkpoint that should be used when the user doesn't specify one.
|
|
- **pre_processor_class** (`type`, *optional*, defaults to [`AutoProcessor`]) -- The class to use to load the
|
|
pre-processor
|
|
- **post_processor_class** (`type`, *optional*, defaults to [`AutoProcessor`]) -- The class to use to load the
|
|
post-processor (when different from the pre-processor).
|
|
|
|
Args:
|
|
model (`str` or [`PreTrainedModel`], *optional*):
|
|
The name of the checkpoint to use for the model, or the instantiated model. If unset, will default to the
|
|
value of the class attribute `default_checkpoint`.
|
|
pre_processor (`str` or `Any`, *optional*):
|
|
The name of the checkpoint to use for the pre-processor, or the instantiated pre-processor (can be a
|
|
tokenizer, an image processor, a feature extractor or a processor). Will default to the value of `model` if
|
|
unset.
|
|
post_processor (`str` or `Any`, *optional*):
|
|
The name of the checkpoint to use for the post-processor, or the instantiated pre-processor (can be a
|
|
tokenizer, an image processor, a feature extractor or a processor). Will default to the `pre_processor` if
|
|
unset.
|
|
device (`int`, `str` or `torch.device`, *optional*):
|
|
The device on which to execute the model. Will default to any accelerator available (GPU, MPS etc...), the
|
|
CPU otherwise.
|
|
device_map (`str` or `dict`, *optional*):
|
|
If passed along, will be used to instantiate the model.
|
|
model_kwargs (`dict`, *optional*):
|
|
Any keyword argument to send to the model instantiation.
|
|
token (`str`, *optional*):
|
|
The token to use as HTTP bearer authorization for remote files. If unset, will use the token generated when
|
|
running `huggingface-cli login` (stored in `~/.huggingface`).
|
|
hub_kwargs (additional keyword arguments, *optional*):
|
|
Any additional keyword argument to send to the methods that will load the data from the Hub.
|
|
"""
|
|
|
|
pre_processor_class = AutoProcessor
|
|
model_class = None
|
|
post_processor_class = AutoProcessor
|
|
default_checkpoint = None
|
|
|
|
def __init__(
|
|
self,
|
|
model=None,
|
|
pre_processor=None,
|
|
post_processor=None,
|
|
device=None,
|
|
device_map=None,
|
|
model_kwargs=None,
|
|
token=None,
|
|
**hub_kwargs,
|
|
):
|
|
if not is_torch_available():
|
|
raise ImportError("Please install torch in order to use this tool.")
|
|
|
|
if not is_accelerate_available():
|
|
raise ImportError("Please install accelerate in order to use this tool.")
|
|
|
|
if model is None:
|
|
if self.default_checkpoint is None:
|
|
raise ValueError("This tool does not implement a default checkpoint, you need to pass one.")
|
|
model = self.default_checkpoint
|
|
if pre_processor is None:
|
|
pre_processor = model
|
|
|
|
self.model = model
|
|
self.pre_processor = pre_processor
|
|
self.post_processor = post_processor
|
|
self.device = device
|
|
self.device_map = device_map
|
|
self.model_kwargs = {} if model_kwargs is None else model_kwargs
|
|
if device_map is not None:
|
|
self.model_kwargs["device_map"] = device_map
|
|
self.hub_kwargs = hub_kwargs
|
|
self.hub_kwargs["token"] = token
|
|
|
|
super().__init__()
|
|
|
|
def setup(self):
|
|
"""
|
|
Instantiates the `pre_processor`, `model` and `post_processor` if necessary.
|
|
"""
|
|
if isinstance(self.pre_processor, str):
|
|
self.pre_processor = self.pre_processor_class.from_pretrained(self.pre_processor, **self.hub_kwargs)
|
|
|
|
if isinstance(self.model, str):
|
|
self.model = self.model_class.from_pretrained(self.model, **self.model_kwargs, **self.hub_kwargs)
|
|
|
|
if self.post_processor is None:
|
|
self.post_processor = self.pre_processor
|
|
elif isinstance(self.post_processor, str):
|
|
self.post_processor = self.post_processor_class.from_pretrained(self.post_processor, **self.hub_kwargs)
|
|
|
|
if self.device is None:
|
|
if self.device_map is not None:
|
|
self.device = list(self.model.hf_device_map.values())[0]
|
|
else:
|
|
self.device = PartialState().default_device
|
|
|
|
if self.device_map is None:
|
|
self.model.to(self.device)
|
|
|
|
super().setup()
|
|
|
|
def encode(self, raw_inputs):
|
|
"""
|
|
Uses the `pre_processor` to prepare the inputs for the `model`.
|
|
"""
|
|
return self.pre_processor(raw_inputs)
|
|
|
|
def forward(self, inputs):
|
|
"""
|
|
Sends the inputs through the `model`.
|
|
"""
|
|
with torch.no_grad():
|
|
return self.model(**inputs)
|
|
|
|
def decode(self, outputs):
|
|
"""
|
|
Uses the `post_processor` to decode the model output.
|
|
"""
|
|
return self.post_processor(outputs)
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
args, kwargs = handle_agent_inputs(*args, **kwargs)
|
|
|
|
if not self.is_initialized:
|
|
self.setup()
|
|
|
|
encoded_inputs = self.encode(*args, **kwargs)
|
|
encoded_inputs = send_to_device(encoded_inputs, self.device)
|
|
outputs = self.forward(encoded_inputs)
|
|
outputs = send_to_device(outputs, "cpu")
|
|
decoded_outputs = self.decode(outputs)
|
|
|
|
return handle_agent_outputs(decoded_outputs, self.outputs)
|
|
|
|
|
|
def launch_gradio_demo(tool_class: Tool):
|
|
"""
|
|
Launches a gradio demo for a tool. The corresponding tool class needs to properly implement the class attributes
|
|
`inputs` and `outputs`.
|
|
|
|
Args:
|
|
tool_class (`type`): The class of the tool for which to launch the demo.
|
|
"""
|
|
try:
|
|
import gradio as gr
|
|
except ImportError:
|
|
raise ImportError("Gradio should be installed in order to launch a gradio demo.")
|
|
|
|
tool = tool_class()
|
|
|
|
def fn(*args, **kwargs):
|
|
return tool(*args, **kwargs)
|
|
|
|
gr.Interface(
|
|
fn=fn,
|
|
inputs=tool_class.inputs,
|
|
outputs=tool_class.outputs,
|
|
title=tool_class.__name__,
|
|
article=tool.description,
|
|
).launch()
|
|
|
|
|
|
TASK_MAPPING = {
|
|
"document-question-answering": "DocumentQuestionAnsweringTool",
|
|
"image-captioning": "ImageCaptioningTool",
|
|
"image-question-answering": "ImageQuestionAnsweringTool",
|
|
"image-segmentation": "ImageSegmentationTool",
|
|
"speech-to-text": "SpeechToTextTool",
|
|
"summarization": "TextSummarizationTool",
|
|
"text-classification": "TextClassificationTool",
|
|
"text-question-answering": "TextQuestionAnsweringTool",
|
|
"text-to-speech": "TextToSpeechTool",
|
|
"translation": "TranslationTool",
|
|
}
|
|
|
|
|
|
def get_default_endpoints():
|
|
endpoints_file = cached_file("huggingface-tools/default-endpoints", "default_endpoints.json", repo_type="dataset")
|
|
with open(endpoints_file, "r", encoding="utf-8") as f:
|
|
endpoints = json.load(f)
|
|
return endpoints
|
|
|
|
|
|
def supports_remote(task_or_repo_id):
|
|
endpoints = get_default_endpoints()
|
|
return task_or_repo_id in endpoints
|
|
|
|
|
|
def load_tool(task_or_repo_id, model_repo_id=None, remote=False, token=None, **kwargs):
|
|
"""
|
|
Main function to quickly load a tool, be it on the Hub or in the Transformers library.
|
|
|
|
<Tip warning={true}>
|
|
|
|
Loading a tool means that you'll download the tool and execute it locally.
|
|
ALWAYS inspect the tool you're downloading before loading it within your runtime, as you would do when
|
|
installing a package using pip/npm/apt.
|
|
|
|
</Tip>
|
|
|
|
Args:
|
|
task_or_repo_id (`str`):
|
|
The task for which to load the tool or a repo ID of a tool on the Hub. Tasks implemented in Transformers
|
|
are:
|
|
|
|
- `"document-question-answering"`
|
|
- `"image-captioning"`
|
|
- `"image-question-answering"`
|
|
- `"image-segmentation"`
|
|
- `"speech-to-text"`
|
|
- `"summarization"`
|
|
- `"text-classification"`
|
|
- `"text-question-answering"`
|
|
- `"text-to-speech"`
|
|
- `"translation"`
|
|
|
|
model_repo_id (`str`, *optional*):
|
|
Use this argument to use a different model than the default one for the tool you selected.
|
|
remote (`bool`, *optional*, defaults to `False`):
|
|
Whether to use your tool by downloading the model or (if it is available) with an inference endpoint.
|
|
token (`str`, *optional*):
|
|
The token to identify you on hf.co. If unset, will use the token generated when running `huggingface-cli
|
|
login` (stored in `~/.huggingface`).
|
|
kwargs (additional keyword arguments, *optional*):
|
|
Additional keyword arguments that will be split in two: all arguments relevant to the Hub (such as
|
|
`cache_dir`, `revision`, `subfolder`) will be used when downloading the files for your tool, and the others
|
|
will be passed along to its init.
|
|
"""
|
|
if task_or_repo_id in TASK_MAPPING:
|
|
tool_class_name = TASK_MAPPING[task_or_repo_id]
|
|
main_module = importlib.import_module("transformers")
|
|
tools_module = main_module.tools
|
|
tool_class = getattr(tools_module, tool_class_name)
|
|
|
|
if remote:
|
|
if model_repo_id is None:
|
|
endpoints = get_default_endpoints()
|
|
if task_or_repo_id not in endpoints:
|
|
raise ValueError(
|
|
f"Could not infer a default endpoint for {task_or_repo_id}, you need to pass one using the "
|
|
"`model_repo_id` argument."
|
|
)
|
|
model_repo_id = endpoints[task_or_repo_id]
|
|
return RemoteTool(model_repo_id, token=token, tool_class=tool_class)
|
|
else:
|
|
return tool_class(model_repo_id, token=token, **kwargs)
|
|
else:
|
|
logger.warning_once(
|
|
f"You're loading a tool from the Hub from {model_repo_id}. Please make sure this is a source that you "
|
|
f"trust as the code within that tool will be executed on your machine. Always verify the code of "
|
|
f"the tools that you load. We recommend specifying a `revision` to ensure you're loading the "
|
|
f"code that you have checked."
|
|
)
|
|
return Tool.from_hub(task_or_repo_id, model_repo_id=model_repo_id, token=token, remote=remote, **kwargs)
|
|
|
|
|
|
def add_description(description):
|
|
"""
|
|
A decorator that adds a description to a function.
|
|
"""
|
|
|
|
def inner(func):
|
|
func.description = description
|
|
func.name = func.__name__
|
|
return func
|
|
|
|
return inner
|
|
|
|
|
|
## Will move to the Hub
|
|
class EndpointClient:
|
|
def __init__(self, endpoint_url: str, token: Optional[str] = None):
|
|
self.headers = {**build_hf_headers(token=token), "Content-Type": "application/json"}
|
|
self.endpoint_url = endpoint_url
|
|
|
|
@staticmethod
|
|
def encode_image(image):
|
|
_bytes = io.BytesIO()
|
|
image.save(_bytes, format="PNG")
|
|
b64 = base64.b64encode(_bytes.getvalue())
|
|
return b64.decode("utf-8")
|
|
|
|
@staticmethod
|
|
def decode_image(raw_image):
|
|
if not is_vision_available():
|
|
raise ImportError(
|
|
"This tool returned an image but Pillow is not installed. Please install it (`pip install Pillow`)."
|
|
)
|
|
|
|
from PIL import Image
|
|
|
|
b64 = base64.b64decode(raw_image)
|
|
_bytes = io.BytesIO(b64)
|
|
return Image.open(_bytes)
|
|
|
|
def __call__(
|
|
self,
|
|
inputs: Optional[Union[str, Dict, List[str], List[List[str]]]] = None,
|
|
params: Optional[Dict] = None,
|
|
data: Optional[bytes] = None,
|
|
output_image: bool = False,
|
|
) -> Any:
|
|
# Build payload
|
|
payload = {}
|
|
if inputs:
|
|
payload["inputs"] = inputs
|
|
if params:
|
|
payload["parameters"] = params
|
|
|
|
# Make API call
|
|
response = get_session().post(self.endpoint_url, headers=self.headers, json=payload, data=data)
|
|
|
|
# By default, parse the response for the user.
|
|
if output_image:
|
|
return self.decode_image(response.content)
|
|
else:
|
|
return response.json()
|