81 lines
3.3 KiB
Python
81 lines
3.3 KiB
Python
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
|
|
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import re
|
|
|
|
from ..models.auto import AutoProcessor
|
|
from ..models.vision_encoder_decoder import VisionEncoderDecoderModel
|
|
from ..utils import is_vision_available
|
|
from .base import PipelineTool
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
|
|
class DocumentQuestionAnsweringTool(PipelineTool):
|
|
default_checkpoint = "naver-clova-ix/donut-base-finetuned-docvqa"
|
|
description = (
|
|
"This is a tool that answers a question about an document (pdf). It takes an input named `document` which "
|
|
"should be the document containing the information, as well as a `question` that is the question about the "
|
|
"document. It returns a text that contains the answer to the question."
|
|
)
|
|
name = "document_qa"
|
|
pre_processor_class = AutoProcessor
|
|
model_class = VisionEncoderDecoderModel
|
|
|
|
inputs = ["image", "text"]
|
|
outputs = ["text"]
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
if not is_vision_available():
|
|
raise ValueError("Pillow must be installed to use the DocumentQuestionAnsweringTool.")
|
|
|
|
super().__init__(*args, **kwargs)
|
|
|
|
def encode(self, document: "Image", question: str):
|
|
task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
|
|
prompt = task_prompt.replace("{user_input}", question)
|
|
decoder_input_ids = self.pre_processor.tokenizer(
|
|
prompt, add_special_tokens=False, return_tensors="pt"
|
|
).input_ids
|
|
pixel_values = self.pre_processor(document, return_tensors="pt").pixel_values
|
|
|
|
return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values}
|
|
|
|
def forward(self, inputs):
|
|
return self.model.generate(
|
|
inputs["pixel_values"].to(self.device),
|
|
decoder_input_ids=inputs["decoder_input_ids"].to(self.device),
|
|
max_length=self.model.decoder.config.max_position_embeddings,
|
|
early_stopping=True,
|
|
pad_token_id=self.pre_processor.tokenizer.pad_token_id,
|
|
eos_token_id=self.pre_processor.tokenizer.eos_token_id,
|
|
use_cache=True,
|
|
num_beams=1,
|
|
bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]],
|
|
return_dict_in_generate=True,
|
|
).sequences
|
|
|
|
def decode(self, outputs):
|
|
sequence = self.pre_processor.batch_decode(outputs)[0]
|
|
sequence = sequence.replace(self.pre_processor.tokenizer.eos_token, "")
|
|
sequence = sequence.replace(self.pre_processor.tokenizer.pad_token, "")
|
|
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
|
sequence = self.pre_processor.token2json(sequence)
|
|
|
|
return sequence["answer"]
|